Matrix norms \& Iterative methods Conditioning

Vineet Sahula
sahula@ieee.org

Overview

Matrix iterative Methods: Conditioning and Iterative correction from residual vectors

Overview

Matrix iterative Methods: Conditioning and Iterative correction from residual vectors
Determinants \& Eigenvalues:

Overview

Matrix iterative Methods: Conditioning and Iterative correction from residual vectors
Determinants \& Eigenvalues:

- Eigen values

Overview

Matrix iterative Methods: Conditioning and Iterative correction from residual vectors
Determinants \& Eigenvalues:

- Eigen values
- Vector Norms

Overview

Matrix iterative Methods: Conditioning and Iterative correction from residual vectors
Determinants \& Eigenvalues:

- Eigen values
- Vector Norms
- Matrix norms

Overview

Matrix iterative Methods: Conditioning and Iterative correction from residual vectors
Determinants \& Eigenvalues:

- Eigen values
- Vector Norms
\square Matrix norms
- Conditioning

Overview

Matrix iterative Methods: Conditioning and Iterative correction from residual vectors
Determinants \& Eigenvalues:

- Eigen values
- Vector Norms
- Matrix norms
- Conditioning
- Iterative correction from residual vectors

Overview

Matrix iterative Methods: Conditioning and Iterative correction from residual vectors
Determinants \& Eigenvalues:

- Eigen values
\square Vector Norms
- Matrix norms
- Conditioning
\square Iterative correction from residual vectors
- Iterative methods for matrix eigen-values computation

Eigen Values \& vector

Eigen Values \& vector

$$
\square \operatorname{det} \mathbf{A}=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} A_{i j}
$$

Eigen Values \& vector

$\square \operatorname{det} \mathbf{A}=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} A_{i j}$
$\square \mathbf{A x}=\lambda \mathrm{x} \quad \Rightarrow \quad(\mathbf{A}-\lambda \mathbf{I}) \mathrm{x}=\mathbf{0}$

Similarity transformation

- Two matrices A and B are said to be similar, while T is non-singular

Similarity transformation

- Two matrices A and B are said to be similar, while T is non-singular

$$
\mathrm{A}=\mathrm{TBT}^{-1} \quad \Rightarrow \quad \mathrm{~B}=\mathrm{T}^{-1} \mathbf{A T}
$$

Similarity transformation

\square Two matrices \mathbf{A} and \mathbf{B} are said to be similar, while T is non-singular

$$
\mathrm{A}=\mathrm{TBT}^{-1} \quad \Rightarrow \quad \mathrm{~B}=\mathrm{T}^{-1} \mathrm{AT}
$$

- Similarity matrices have identical Eigen values

Similarity transformation

- Two matrices A and B are said to be similar, while T is non-singular

$$
\mathbf{A}=\mathbf{T B T}^{-1} \quad \Rightarrow \quad \mathbf{B}=\mathbf{T}^{-1} \mathbf{A T}
$$

- Similarity matrices have identical Eigen values
replacing $\mathbf{A}: \mathbf{T B T}^{-1} \mathbf{x}=\lambda \mathbf{x}$
$\mathbf{B T}^{-1} \mathbf{x}=\lambda \mathbf{T}^{-1} \mathbf{x}$

Similarity transformation

- Two matrices A and B are said to be similar, while T is non-singular

$$
\mathbf{A}=\mathbf{T B T}^{-1} \quad \Rightarrow \quad \mathrm{~B}=\mathbf{T}^{-1} \mathbf{A T}
$$

- Similarity matrices have identical Eigen values
replacing $\mathbf{A}: \mathbf{T B T}^{-1} \mathbf{x}=\lambda \mathbf{x}$
$\mathbf{B T}^{-1} \mathbf{x}=\lambda \mathbf{T}^{-1} \mathbf{x}$
- Hence \mathbf{A} and \mathbf{B} have identical Eigen values, i.e. λ

simiariy fransiormation using di-

 agonal Matrix- Similarity matrix may be a diagonal matrix Λ

$$
\begin{aligned}
& \mathrm{A}=\mathrm{T} \Lambda \mathrm{~T}^{-1} \\
& \mathrm{AT}=\mathrm{T} \boldsymbol{\Lambda}
\end{aligned}
$$

- Similarity matrix may be a diagonal matrix $\boldsymbol{\Lambda}$

$$
\begin{aligned}
& \mathrm{A}=\mathrm{T} \Lambda \mathrm{~T}^{-1} \\
& \mathrm{AT}=\mathrm{T} \Lambda
\end{aligned}
$$

\square Only elements of Λ are along diagonal, precisely $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$
$\mathbf{A x}_{\mathbf{j}}=\lambda_{\mathbf{j}} \mathbf{x}_{\mathbf{j}}$

- Similarity matrix may be a diagonal matrix Λ

$$
\begin{aligned}
& \mathrm{A}=\mathrm{T} \Lambda \mathrm{~T}^{-1} \\
& \mathrm{AT}=\mathrm{T} \Lambda
\end{aligned}
$$

\square Only elements of Λ are along diagonal, precisely $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$
$-\mathbf{A} \mathbf{x}_{\mathbf{j}}=\lambda_{\mathbf{j}} \mathbf{x}_{\mathbf{j}}$
\square Here, \mathbf{x}_{j} are $j^{\text {th }}$ column of \mathbf{T}

- Thus columns of T consists of eigen-vectors of A
- We need be able to choose n lineraly independent eigen-vectors, for T to be non-singular

Similarity Transformation...

\square If \mathbf{A} is symmetric matrix then

- T may be chosen to be orthogonal, $\mathrm{T}^{-1}=\mathrm{T}^{T}$ and, $\mathbf{A}=\mathbf{T} \boldsymbol{\Lambda} \mathbf{T}^{T}$

Norms

- Vector p-norm
- $\|\mathbf{x}\|_{p}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}$
for $p=2,\|\mathbf{x}\|_{2}=\left[\mathbf{x}^{\mathbf{T}} \mathbf{x}\right]^{1 / 2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}$
for $p=\infty,\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$

Norms...

\square Matrix norms
$\|\mathbf{A}\|=\sup _{\|x\|=1}\|\mathbf{A} \mathbf{x}\|=\max _{\|x\|=1}\|\mathbf{A} \mathbf{x}\|$
Also, $\|\mathrm{A}+\mathrm{B}\| \leq\|\mathrm{a}\|+\|\mathrm{B}\|$ and, $\|\mathrm{AB}\| \leq\|\mathrm{a}\| \cdot\|\mathrm{B}\|$

Norms...

- Computing matrix norm of order one

$$
\begin{aligned}
\|\mathbf{A} \mathbf{x}\|_{1} & =\sum_{i=1}^{n}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \\
& \leq \sum_{j=1}^{n} \sum_{i=1}^{n}\left|a_{i j}\right|\left|x_{j}\right| \\
& \leqslant \sum_{j=1}^{n}\left(\sum_{i=1}^{n}\left|a_{i j}\right|\right)\left|x_{j}\right| \\
& \leq \sum_{j=1}^{n}\left(\begin{array}{c}
\max \\
1 \leq k \leq n \\
\left.\sum_{i=1}^{n}\left|a_{i k}\right|\right)\left|x_{j}\right| \\
\end{array}\right. \\
& \leq\left(\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|\right)\left(\left|x_{j}\right|\right)
\end{aligned}
$$

The last factor is unity, if $\|\mathbf{x}\|=1$, and thus

- $\|\mathbf{A}\|_{1}=\underset{\|x\|-1=1}{\max }\|\mathbf{A x}\|_{1} \leqslant \max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|$

Conditioning

\square Definition- Condition number of $n \times n$ non-singular matrix \mathbf{A} for the norm $\|\cdot\|_{p}$ is
$k_{p}(\mathbf{A})=\|\mathbf{A}\|_{p}\left\|\mathbf{A}^{-\mathbf{1}}\right\|_{p}$

- Perturbing A,
$\square(\mathbf{A}+\delta \mathbf{A})(\mathbf{x}+\delta \mathbf{x})=\mathbf{b}+\delta \mathbf{b}$
$\square \delta \mathbf{x}=-\mathbf{A}^{-1} \delta \mathbf{A}(\mathbf{x}+\delta \mathbf{x})+\mathbf{A}^{-1} \delta \mathbf{b}$
$\|\delta \mathbf{x}\| \leqslant\left\|\mathbf{A}^{-1}\right\| \cdot\|\delta \mathbf{A}\|(\|\mathbf{x}\|+\|\delta \mathbf{x}\|)+\left\|\mathbf{A}^{-1}\right\| \cdot$

Conditioning

$$
\|\delta \mathbf{x}\| \leqslant\left\|\mathbf{A}^{-1}\right\| \cdot\|\delta \mathbf{A}\|(\|\mathbf{x}\|+\|\delta \mathbf{x}\|)+\left\|\mathbf{A}^{-1}\right\| \cdot\|\delta \mathbf{b}\|
$$

Conditioning

$$
\|\delta \mathbf{x}\| \leqslant\left\|\mathbf{A}^{-1}\right\| \cdot\|\delta \mathbf{A}\|(\|\mathbf{x}\|+\|\delta \mathbf{x}\|)+\left\|\mathbf{A}^{-1}\right\| \cdot\|\delta \mathbf{b}\|
$$

- Computing two terms on right,

$$
\begin{aligned}
& \left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{b}\| \leqslant\left\|\mathbf{A}^{-1}\right\|\|\mathbf{A}\|\|\mathbf{x}\|\|\delta \mathbf{\|}\| \\
& \|\mathbf{b}\| \\
& \left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}\|=\left\|\mathbf{A}^{-1}\right\|\|\mathbf{A}\| \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}=k e
\end{aligned}
$$

Conditioning

$$
\|\delta \mathbf{x}\| \leqslant\left\|\mathbf{A}^{-1}\right\| \cdot\|\delta \mathbf{A}\|(\|\mathbf{x}\|+\|\delta \mathbf{x}\|)+\left\|\mathbf{A}^{-1}\right\| \cdot\|\delta \mathbf{b}\|
$$

- Computing two terms on right,
- $\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{b}\| \leqslant\left\|\mathbf{A}^{-1}\right\|\|\mathbf{A}\|\|\mathrm{x}\| \frac{\|\delta \mathrm{b}\|}{\|\mathbf{b}\|}$
- $\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}\|=\left\|\mathbf{A}^{-1}\right\|\|\mathbf{A}\| \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}=k e$
$\square\|\delta \mathbf{x}\|(1-k e) \leqslant k e\|\mathbf{x}\|+\mathbf{k}\|\mathbf{x}\| \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}$

Conditioning

$$
\|\delta \mathbf{x}\| \leqslant\left\|\mathbf{A}^{-1}\right\| \cdot\|\delta \mathbf{A}\|(\|\mathbf{x}\|+\|\delta \mathbf{x}\|)+\left\|\mathbf{A}^{-1}\right\| \cdot\|\delta \mathbf{b}\|
$$

- Computing two terms on right,

$$
\begin{gathered}
\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{b}\| \leqslant\left\|\mathbf{A}^{-1}\right\|\|\mathbf{A}\|\|\mathbf{x}\| \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} \\
\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}\|=\left\|\mathbf{A}^{-1}\right\|\|\mathbf{A}\| \frac{\| \frac{\|\mathbf{A}\|}{\|\mathbf{A}\|}}{=}=k e \\
\|\delta \mathbf{x}\|(1-k e) \leqslant k e\|\mathbf{x}\|+\mathbf{k}\|\mathbf{x}\| \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} \\
=\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leqslant \frac{k e}{(1-k e)}\left(e+\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}\right)
\end{gathered}
$$

Iterative Methods

- Let's assume $\mathbf{x}_{\mathbf{0}}$ be an initial approximation to solution of $\mathbf{A x}=\mathbf{b}$

Iterative Methods

\square Let's assume x_{0} be an initial approximation to solution of $\mathbf{A x}=\mathbf{b}$
\square Corresponding to \mathbf{x}_{0}, there is a residual vector r_{0} given by
$\mathrm{r}_{0}=\mathrm{Ax}_{0}-\mathrm{b}$

Iterative Methods

\square Let's assume \mathbf{x}_{0} be an initial approximation to solution of $\mathrm{Ax}=\mathrm{b}$
\square Corresponding to \mathbf{x}_{0}, there is a residual vector $\mathbf{r}_{\mathbf{0}}$ given by

$$
\mathrm{r}_{0}=A \mathrm{x}_{0}-\mathrm{b}
$$

- If the bound for $k(\mathbf{A})$ is known, the residual vector may be used as a guide to accuracy
$\square \delta \mathrm{x}=\mathrm{x}-\mathrm{x}_{0}$
$\mathrm{r}_{0}=\mathbf{A} \mathrm{x}_{0}-\mathbf{b}=\mathbf{A}(\mathrm{x}-\delta \mathrm{x})-\mathrm{b}=-\mathbf{A} \delta \mathbf{x}$

Iterative Methods

\square Let's assume \mathbf{x}_{0} be an initial approximation to solution of $\mathbf{A x}=\mathrm{b}$

- Corresponding to \mathbf{x}_{0}, there is a residual vector \mathbf{r}_{0} given by

$$
\mathrm{r}_{0}=A \mathrm{x}_{0}-\mathrm{b}
$$

- If the bound for $k(\mathbf{A})$ is known, the residual vector may be used as a guide to accuracy

$$
\begin{aligned}
& \delta \mathrm{x}=\mathrm{x}-\mathrm{x}_{0} \\
& \mathrm{r}_{0}=\mathbf{A} \mathbf{x}_{0}-\mathbf{b}=\mathbf{A}(\mathrm{x}-\delta \mathrm{x})-\mathrm{b}=-\mathbf{A} \delta \mathbf{x}
\end{aligned}
$$

\square So that $\delta \mathrm{x}$ is th solution of the system
$\square \mathbf{A} \delta \mathbf{x}=-\mathbf{r}_{0}$

Iterative Methods

\square Let's assume x_{0} be an initial approximation to solution of $\mathrm{Ax}=\mathrm{b}$
\square Corresponding to \mathbf{x}_{0}, there is a residual vector $\mathbf{r}_{\mathbf{0}}$ given by

$$
\mathrm{r}_{0}=A \mathrm{x}_{0}-\mathrm{b}
$$

- If the bound for $k(\mathbf{A})$ is known, the residual vector may be used as a guide to accuracy

$$
\begin{aligned}
& \delta \mathrm{x}=\mathrm{x}-\mathrm{x}_{0} \\
& \mathrm{r}_{0}=\mathbf{A} \mathrm{x}_{0}-\mathbf{b}=\mathbf{A}(\mathrm{x}-\delta \mathrm{x})-\mathrm{b}=-\mathbf{A} \delta \mathrm{x}
\end{aligned}
$$

\square So that $\delta \mathrm{x}$ is th solution of the system
$\square \mathbf{A} \delta \mathbf{x}=-\mathbf{r}_{0}$
\square We attempt to solve, $\mathbf{x}=\mathbf{x}_{0}+\delta \mathbf{x}$

Iterative Methods...

- Let's consider solution of $\mathbf{A x}=\mathbf{b}$

Iterative Methods...

- Let's consider solution of $\mathbf{A x}=\mathbf{b}$
\square If \mathbf{E} and are $n \times n$ matrices, such that $\mathbf{A}=\mathbf{E}-\mathbf{F}$, then
- $\mathrm{Ex}=\mathrm{Fx}+\mathrm{b}$

Iterative Methods...

- Let's consider solution of $\mathbf{A x}=\mathbf{b}$
\square If \mathbf{E} and are $n \times n$ matrices, such that $\mathbf{A}=\mathbf{E}-\mathbf{F}$, then
- $\mathrm{Ex}=\mathrm{Fx}+\mathrm{b}$
\square This suggests an iterative procedure
Ex $\mathrm{m}_{\mathrm{m}+1}=\mathrm{F} \mathbf{x}_{\mathrm{m}}+\mathrm{b}$ for arbitrary \mathbf{x}_{0}
$\mathbf{x}_{\mathrm{m}+1}=\mathbf{E}^{-1} \mathbf{F} \mathbf{x}_{\mathrm{m}}+\mathbf{E}^{-1} \mathbf{b}$
The sequence $\left(\mathrm{x}_{\mathrm{m}}\right)_{\mathrm{m}=0}^{\infty}$ converges, if $\left\|\mathrm{E}^{-1} \mathrm{~F}\right\|<1$

Iterative Methods...

- Let's consider solution of $\mathbf{A x}=\mathbf{b}$
\square If \mathbf{E} and are $n \times n$ matrices, such that $\mathbf{A}=\mathbf{E}-\mathbf{F}$, then

$$
\mathrm{Ex}=\mathrm{Fx}+\mathrm{b}
$$

\square This suggests an iterative procedure
$\square \mathbf{E x} \mathbf{x}_{\mathrm{m}}=\mathbf{F} \mathbf{x}_{\mathrm{m}}+\mathrm{b}$ for arbitrary \mathbf{x}_{0}
$\mathbf{x}_{\mathrm{m}+1}=\mathrm{E}^{-1} \mathbf{F} \mathbf{x}_{\mathrm{m}}+\mathrm{E}^{-1} \mathbf{b}$

- The sequence $\left(\mathrm{x}_{\mathrm{m}}\right)_{\mathrm{m}=0}^{\infty}$ converges, if

$$
\left\|\mathbf{E}^{-1} \mathbf{F}\right\|<1
$$

\square Jacobi's and Gauss-Seidel methods

Matrix Eigen-values computation

- Realtion between matrix norms and eigen-values; Gerschgorin theorems

Matrix Eigen-values computation

- Realtion between matrix norms and eigen-values; Gerschgorin theorems
\square Simple \& inverse iterative method;Rayleigh quotient

Matrix Eigen-values computation

- Realtion between matrix norms and eigen-values; Gerschgorin theorems
\square Simple \& inverse iterative method;Rayleigh quotient
\square Sturm sequence method

Matrix Eigen-values computation

- Realtion between matrix norms and eigen-values; Gerschgorin theorems
\square Simple \& inverse iterative method;Rayleigh quotient
\square Sturm sequence method
- The QR algorithm

Matrix Eigen-values computation

- Realtion between matrix norms and eigen-values; Gerschgorin theorems
\square Simple \& inverse iterative method;Rayleigh quotient
\square Sturm sequence method
- The QR algorithm
- Reduction to tri-diagoonal form: Householder's method

