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Overview

Matrix iterative MethodsConditioning and Iterative
correction from residual vectors
Determinants & Eigenvalues

= Eigen values

= Vector Norms

= Matrix norms

= Conditioning

= |[terative correction from residual vectors

= |[terative methods for matrix eigen-values
computation

Matrix: Iterative methods — b. 2/1



Values & vector




Values & vector

tA = ZZ 1 ( ) a”&] Azj




Values & vector

tA ZZ 1( ) aJZJAZj
X — \X = (A—ADx=0



Similar ity transfor mation

= Two matricesA andB are said to be similar, while
T Is non-singular
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Similar ity transfor mation

= Two matricesA andB are said to be similar, while
T Is non-singular

= A=TBT = B =T !AT
= Similarity matrices have identical Eigen values

= replacingA: TBT 'x = \x

» BT 'x = \T 'x
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Two matricesA andB are said to be similar, while
T Is non-singular

A =TBT = B=T'AT
Similarity matrices have identical Eigen values
replacingA: TBT 'x = \x

BT 'x = \T1x
HenceA andB have identical Eigen values,
l.e. A
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SOlcy Ity 11TalslOnNlatiornl uaily vl-
agonal M atrix

= Similarity matrix may be a diagonal matrix
s A=TAT'
um AT =TA
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= Similarity matrix may be a diagonal matrix
s A=TAT'
um AT =TA

= Only elements ofA are along diagonal, precisely
A, Ao,y Ap,

] AXj = )\ij
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OlfHcal 1LYy 11AllSIONTiallonl ualtily Uil-
agonal M atrix

= Similarity matrix may be a diagonal matrix
A =TAT™
AT =TA
= Only elements ofA are along diagonal, precisely
A, Ao,y Ap,
AXj — )\ij
= Here,x; are;"" column of T

Thus columns ofl’ consists of eigen-vectors of
A

We need be able to choosdineraly independent
eigen-vectors, fofl’ to be non-singular
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Similar ity Transformation...

» If A I1s symmetric matrix then
= T may be chosen to be orthogonal;! = T*
w and, A = TAT!
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Norms

= Vector p-norm

o {x(lp = iz [l
1/2 n 1/2
w forp = 2, HXHQ — [X X} 2 = (Zz’:1 \%12)

max
1<i1<n

=

mforp = oo, [|x|[oe = ]
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Norms...

= Matrix norms

JAl = 7, | Ax] = 7, | Ax]

and,

|| Bl
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Computing matrix norm of order one

Axl = S S e
Z] 1D et |aig] ;]

Z] 1 (2oim1 laij)) |2

S (12, S lai ) o
(12?& Dic1 \@z‘j!) (l5])

The last factor is unity, if|x|| = 1, and thus

Al = 5ie <1?a§n2?:1\%!

VANRY/ANRVAN

VAN
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Definition- Condition number of x n non-singular
matrix A for the norm|| - ||, is

kp(A) = [[AlIIAT ]
PerturbingA,

(A +0A)(x+0x)=b+db

ox = —A10A(x+0x) + A 1ob

lox|| < JATH - A (i<l + floxl[) + AT -
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Itioning

x| < JATH] - [ISAI(]]x] |A=H - [lob]|




Conditioning
L

lox|[| < |AH] - oAl (=]l + lox]]) + A7 - [|db]]

= Computing two terms on right,

_ _ ob
AL[|ob] < [JA|[| A L

_ _ )
A7Y[I6A] = AT AJ1E = ke
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Conditioning

lox|[| < |AH] - oAl (=]l + lox]]) + A7 - [|db]]
= Computing two terms on right,
AT ab] < 1A Al ey

Ib]
AY[|IA]] = A7 A | LAl

SAl _ g
IA]

ob
= [[ox | (1 = ke) < kel|x| + k||| 45
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Conditioning

lox | < |AH] - loA|([[x]
= Computing two terms on rig

5b)
SA

A1

A

x

|+ kx| bl

)

A
A

lox|[) + [A7*]] - [|6b]]

Nt

l[obl]
Jc 1221

ISAl _ 1.
Tan

|0b|
b
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lterative M ethods

m Let's assumexy be an initial approximation to
solution ofAx = b
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lterative M ethods

m Let's assumexy be an initial approximation to
solution ofAx = b

» Corresponding teg, there is aesidual vector r
given by
I'o — AXO —b
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Let's assumex, be an initial approximation to
solution ofAx = b

Corresponding teeg, there Is aesidual vector rg
given by

ro = Axg—Db
If the bound fork(A) is known, the residual vector
may be used as a guide to accuracy

0X = X — Xo

rg = Axg—b=A(x—-90x) —b=—Adx
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Let's assumex, be an initial approximation to
solution ofAx = b

Corresponding teeg, there Is aesidual vector rg
given by

ro = Axg—Db
If the bound fork(A) is known, the residual vector
may be used as a guide to accuracy

0X = X — Xg

rg = Axg—b=A(x—-90x) —b=—Adx
So thatox Is th solution of the system

Adx = —rg
We attempt to solvex = x¢ + 0x
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Ive M ethods...

t's consider solution oAx = b



lterative M ethods...

m Let's consider solution oAx = b

» If E and aren x n matrices, suchthah = E — F,
then

s Ex=Fx-+Db
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Let's consider solution oAx = b

If E and aren x n matrices, suchthak = E — F,
then

Ex=Fx+Db

This suggests an iterative procedure
Ex.,..1 = Fx,, + b for arbitraryxg
Xm+1 = E 1Fx, + E™'b
The sequencéxy,).._, converges, if
IE-'F|| <1
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Let's consider solution oAx = b

If E and aren x n matrices, suchthak = E — F,
then

Ex=Fx-+Db

This suggests an iterative procedure
Ex.,..1 = Fx,, + b for arbitraryxg
Xm+1 = E 1Fx, + E™'b
The sequencéxy,).._, converges, if
IE-'F|| <1

Jacobi’s andGauss-Saidel methods

Matrix: Iterative methods — . 13/1



Matrix Eigen-values computation

= Realtion between matrix norms and eigen-values;
Gerschgorin theorems
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Matrix Eigen-values computation

= Realtion between matrix norms and eigen-values;
Gerschgorin theorems

= Simple & inverse iterative methadgayleigh quotient
= Sturm seguence method
= The QR algorithm

= Reduction to tri-diagoonal forntiouseholder’s
method

Matrix: Iterative methods — . 14/1
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