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4 SEMBOLIC ANALYSIS AND REDUCTION OF VLA CIRCUITS

L1 A “Hello-World" Example
Ay o smiple expmple, Frg. 1.1 shows o ciroodt with two resisions ond two
cipiacitors. This circwit 15 stimulated by a volinge soorce, and the ather end 15

ot i t
]—vw—T—.ww—T
— =) ~ i

“T°T 1

Figww 1L Symibalie analydis of o siople BC cireuit

pronmded, Syemfolicelly in @ domain, vy con be written us
e
fuge + lgres+geos + cge)s +opeast T

This symbolic equation tells gs that it 84 o second order low-pass filter with
(W gmn = I OF course for this simple circut, every electincal enginesr cun
wrile up the ictwal equation o the old pencil-and-paper siyle. But when circiidts
become furge, such kind of transfer functions can grow exponentally in erms
of numiber of produect benms such s gy g, On the othier band, symbolic aa ysis
iy e ke 1o penerate them automatacally,

i1 a symbolic analyzer produces 3 symbolie tansfier fanction with hundreds
o thowesands of symholie product terms and with all cirenit parmmelers mied
iopether, it's hard toidentify the mfluence of every perameder i the whole func-
thon. Simplification con be applied to son oot the dominant terms of parmietens.
e pre pwo streepies of doing this;

s Mized symbolic-nlgebriic anolysis keeps only o small nomber of cirouit
parameters ps symbols and the rest o5 numerical values. 1 belps reduce the
pemmiber af gosta] product vermes and the length of each of then, The extremse
of this apgraich bs the algebrie analysts o which off circuil parimnétens
wre numericul values and the only symbol nothe expressions is (he complex
fregquency w,

s Syiibodic simyplification discards msigniticont terms based on e veltive
prtagmitcdess of pymibolic parmmeters and the freguency defioed o saome pom-
bl dlespgn poants or ayvier some pges. 1 can e perfommed Defore, during,
of ifer the genenition of syimbolic terms {8, 42, 73, 107, 27, 17, 98],

1.2 Problem Formulation for Symbolic Analysis

Clospnicder o luriped Bnea(iged ) Hime-lovarbant analog et in Tregueney
disrbin. s Clreiin equation cun be formulubisd, for example, by the modal

Intmdiecitaon 5
analysis approach in the fllowing genern! form [96];
Ax =n (1.1)

The cirewir wnknown vector X may be composed of n node vollezes, and the
ialmitianee motrin A i an o ox g sparse symbolic matris, &isa vector of external
ROUICCR.

Symhbolic analysis of analog cirewils can be stuted as the problem of solving
the symbolic equagion {1.1), 1. ¢, 1o find 1 symbolic expression of any circuit
nitkaowas in terms of symbolie parmneers in A and symbolic excitations ¢x-
pressed by b, According to Cromer's rule, thi £th component « . of the unknowm
vecior & is abiained os follows:

oo o it B (1) det{Aa )
c det{ A)

: 1.2)

selieris lef (A} i the determinant of mutrix A, and {—1 :I""*ffr?itfi..l LR el
in the eofactor of det{ A) with respect to element o; 4 of matrix A ol row 7 and
column f,

Must symbalic simulstors are targeted g finding various network functions,
ach being defined us the rutio of w oulpat From % o an input from b, Generally,
atnister Tunction of o linear(ized) circait can be obtained asw rutions] function
i the complex frequency veriable a:

His) = L dilPrpa o Pl

- ] [l'}}
oailpnpa o )8

whiere [y G opas = oo P el gl gy - = i ) e symibolic polymcemi ol fune:
B b cereatil parnmelens Piid = Ly These polynomilils in tum can be
eapensed in a nested form or anexpanded sum-of-product Toom.

Aggikin, s citii categonize symbolic analysls in erms of number of symbols
il i e eircaie

0 the polynomial coefficents, f(o-- ) amd g0 3, contain only symbols,
i i pumeesd fially oF enect symbolic anelysis.

U only some cirouit purameters: aee represented 03 svmbols, it s named
praarifind or meved symbolic analysis:

b il expreine cuse by that transfer function B s) has only one symbaol - the
comples frequency o, which happens when all ¢ircuii paramders are no-
inirheal values anil the symbolic analysls degencraes o algebric analysis,

e centinl bnsne 1y symbolic onolysin ba o find symbolie expressiony of
el A} md the cofscrods of det| A}



& SYMBOLIC AMALYSIS AND REDUFCTION €F VIS CIRCUTTS

2,  Linear Circuit Reduction

finear cirouits targeded in this book refer W mterconnéct parasitics in modérn
WS designs, Interconnects become maore important o digial cireoit designers
than never belone, becawse the quality of the inferconnects needs o be exammed
i every aspect from delay 10 signal integrity issues.

Although accurate analysis is preferable, wm-around time is never o neg-
[igible Tactor 0 be considered, Because a hoge amount of inferconnects ane
preseni in typical VST designs.  MNowadoys, @ million-trunsistor design can
casily accommodide miles of interconnects,

To analyze interconnect parasitics necurstely ond goickly, lineor circuit re-
duction hns io be adopied. Hesearchers have devised o bod of techngues on s
hot topie, Thear wirks con be classified mio two cabegones:

& projecton-bised mode] order reduction.
o peneratized Y- transformation.
2.1  Projection-Based Model Order Reduction

Musdeling complicated linear circuiss with simple yet sccurale ¢ircuits
calbied mioded preler reciicrion. The ide is to snalyze or simulate the simplified
mindels to reduce circoit venficstion time,

A number of projection-hased model-order reduction based technigues have
been mimdoced (23, 24, 25, 64, 66, 80, 7| w snalyze the mansient behavior
of interconnects, Those projection-tased wleorilims mamly work for passive
liner networks o the computution of moments and Krvioy spece base vectors
requires o special partivoning of circuit matrices and salving of the partitioned
circuil matrices iernvely.

The reduction i vpically done in frequency or & doman, where 5 @ the
eomplex frequency variable and defined s jw, where wis the redical frequency
in comiplex domuin analysis, In frequency domnin snalysis, storage ¢lements
suich ws capacitors. and gondoctors. oll heve their impedance written in s in
frequency domain, For example, a capacitor with capacitonee value 0,10 Gl
wan be writlen as {118 i freguency domeasn as is impedance valoe.

22 Generalized Y-A Transformation

Anuther different approach b cirouit complexity reduction is by meas of
Joscl vosde rechsction wnd resbizanon of redoced nerworks bused on local mode
elimination wod realizatoen (22,74, 2000, 75, B2] The oo ides s o reduce the
incumber oo nosdes in e circuits and approximste the elements of the reduced pys-
fem with eather order- redoced mmtiosal fanctions or realized low onder L0
petworks, The magor advantege of these methisds over peojection-taed ieth
i it that e rediction con b dome b bodil iiieer aond moooverad] sofurioas

fresroglcniion 3

of the entire cirouit are required, which makes these methods very amenable
i sirtack large lincar networks. This idea was first explored by selective node
elimination for RC circuits [22, 74, where time constant analysis is used to
select nodes for elimination.

Generalized Y-A mnsformation [69, 68), RLCK circuit crunching (2], and
branch merging [75] have been developed based on nodal analyzis, where in-
ductunce becomes susceptance in the admittance matria.  Generalized Y-A
transfarmation provides & general node elimmation based parasitic reduction
rechmigue |GE],

A generalized block Y-A transformation based on modified nodal anatysis
formulation has been proposed (82, 3] recently, which leads o the general
hierarchical model order reduction techniques and it can be applied (o any
linear circuits with any linear device. Both Generalized Y-A transformation
atid hicrurchical moded arder reduction technigues will be discussed in detail in
the following ehuplers.

Both projection-hased and node eliminution based model order reduction
nethods can be viewed a special symbolic analysis where only the compley
freyuency vamiable is the symbol. I general, transfer functions ane functions
of &, which are called semi-symbaolic snalysis formt from the perspective of
syimibalie analysls, )

A Symbolic Analysis for Analog Circuit in a Nuishell

Kesearch on symbolic analysis can be-datisd back 1o the Lust century, Devel-
vpemicnts in this field gained real momentum in 1950's when eleetric c_mnpm:rs
were introduced and wsed in circuil malysis, Methods developed from the
1950 tor the 1980% cun be basically cutegorized as:

I Pree Enumierition methimds,

! Sigmm Flow Gropl methods,

b Parameter Exiraction methods,

I Nomerical Interpolation metids and
Y Mvatrin-Determinos methods,

The detuils of these method con be Found (i [38, 53], Tn e lote 19807, svm
bl g2 :lruLI_-.-'.a_'H gains renewed interests i ndostrial demands for analoyg d:;igu
iitommation increased. Various methods are proposed o solve the long-standing
cirenit-size problem, The srategios wied inmodem symbolic nonlyens in gen-
el come i 1w oolegories: thone bosed on hierachical decomponitions (41,
HE9 1] and those based on appeosimations [0, 98, 107, 42, 107, 15, 48, 49, A
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approximation, passive reduction, and realizable reduction, with: esch more
sophisticated than the previows one.

I. Time Domain Analysis

In this section, we describe £ and JLC network analysis in tme domain
progressively in three steps, Our first step is o present an spproach 1o analyzing
R circuits, And then the second step i to formulate RLC circuits with certuin
specinl structure, Our Lt step i o dntroduce the formulbation of BLE elreutts of
general structare. Each of theim beging with o dmple example and are presented
Formally in matrix terminologies afierwards.

1.1 RO Interconnect Circuit Formulation

FC interconneet circuits can ke formulated using nodal anulysis formuola-
tion, Moddal analysis is o classical circuit analysis methed based on Kirchhoff's
Curvent Law' (KCL) and branch constitutive equations®, Fora given 2C linear
cireuit with o+ | nodes, nodal analysis formulates the problem in the following

Iwy st

step 1. choose o geound or reference node, which wsially iz ken to he ot
potentiol of sero volt. All other node voltages constitute o unknowns';

&tep 2. establish KCL equations for oll the n nodes by representing branch
currents i terms of node voltages using branch constitutive equations,

Example 2.1, Refer 1o the BC tree in Fig. 2.1, Tn podal analysis formulation
of the circuit, we [irst determing the onknowns, Since vy §s equal o v, which

i ﬂ'.* 1 f.:| @ Gi! @
i ;J’ zj:l 1 I

Figre 20, A 0C tree demonsirating nodal amslysis formulotiont carront Ewimg out of o ode
14 equal tocurrerds Bwing inta the mode

is the given inpart, we use node vollages vy, vy, and 1y s mknown variables o

' Kinchhol™s Curren Lowr for lumped ciecsin, e sigsbiaid sim of (he cementy eilessng (leaving) i sl
e

A Femach comsdiiiniie equations e i el hipa for el slaments sk m resdvioes, copsciion,
b eyl il Nl sitinen, et [y e, e Bl o r [T

A vl v e d o

it v ool varltiggien i fiibegurndbent tecmse iy § fy 1oy i mlegiess vl G o i

ik o vy el e il

i of Circuir Analysis 17

wite the three KOCL eguuions

Clidg = Galny = v) + Gl — vl (E.1)
Oty = G{eg = l-':-|.} + {l‘:ﬂ“.'-l = "?.t:' (12)
Chyiy = Gylva — w), (13)

or i we orler the unknown virdables on the right-hand side oF the eguations,
wiz muay have

Oyl = —(6 4+ G Juy +ET +Gd (1.4)
iy = Gy —(G) + Ol +oawy {1.5)
Chaiy = Gata —Lraw {1.6)

The mutrex form of the above thiee simultineous equations woukl be

[y iy P S T | | T (e A8
Cls | =— =[] (g + tea =] ||+ | O
y ]

3 iy i -y (f
(L)

Nue (hat weé have put a minus sign ootside the squage malris.
Without boss of generality, we assume that the valiuge drop ad the current
frvsin 473 0o €5 wre two oartpot varinhles il we ae interested i, e ¢, g v, are

il onipuats:
L5 ]
= [l =1 0f |5
[l-';] a 'GI -3 U] [:1:] e

Ao (i rieacher cin imigging, we can wse some linear combination of the unknowns
foobn viltages between any twonodes or currents on any beanch in the cireaiv

Lind 1,7, each row js derivad Trom KCL forsach nodein Fig. 2.1, Forexample,
Wl T exquation states that the current fowing cut of node £ through €, 1. <,
14y, b equal to the currents fiowing into the node through G, ond G, which

e €80y = e oo £ (g — ), respectively.
tn peneral, BC' cirenit formulation can be expressed us

Cvil) = —Gvit) + Puit) (1.9
¥it) = Qvit) (1L

where V' denoies the w ankoowi nedul voliuges in B cireadis, In (1.9), the
e 07 2 B g ©F 8 T pepresent the conduetimee and capacitance
o lamienits, respectively

Pl nobe that i © winy be singular, i e some fows i G moy be e
It happens when the cormesponding node does not cosnect t any capacitor 1t ls
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woath noting s well that the ¢ matrix in {1.7} is non-singular if and oaly it the
fer! intereonnect circuits meet the requirement that each node hes one or more
resistive path (o some other nodes. Being @ non-singular mairix is a necessory
condition for the most linear reduction technigues.

1.2 RLC Interconneel Ciréult Formulation

Formulation of & tvpe of RLC circuits can be easily obtained by sugmenting
the AC formulation we have inteodueed, The /& L circuits in this class reguin
thit every inductor must be in series with o resistor, In fact when L is considered,
the parasitics of an inlerconpeet segment typically is modeled aza JLC branch
a5 shawn dn Fig, 2.2, The heonch constitative eyuition of L in Fig. 2.2 5 given

Fie
e % (t)  wplt] ﬂzil}

Layer3 | ] t—.-m—-—'w T
) L

Layersd &= ES RO r
i} (L]

Figoee 2.3, LA pasasitics of o segrent of inlerconnect on wednl bayerss(o) lfsgmtion of
bl initereninest lnyess th) # L pamsific mode] of onirderconnect ssgment in layer 3,

by .
wy(t) — weld) = Lap L], (1,11

where oy (¢ mnd va(f) are the two nodal voltages of the inductor

The formuolation method that we described for B circoits can be used w
foomulate ELC circuits with minor modifications, We have known thar each
rony i the Tormubaton is constituied by KCL, KCL equations are established in
terms of nodal voltages and thelr derivatives as unknowns, I we want to keep
the formulation, @ (f) ks to he represented with nodal yoltages,

In general, iy (¢) can be calculated by

i
i(t) = %j: [ (L) - Elgl;l']-}r” = 1pltal, {113}

This integral equation, however, i opporently oof o i to oer G formulations

because anly nodal valtages and their derivatives can be osed as naknowns
Fortunately, provided that the inductor is i series with o resisor i our JLC

chrcuits, 45 (0] b8 equal o the coment Howing through the resistor as well, Le,

k) = Gd (vgl) = wygd)) i85

anics of Cireaeid Amalyais 9

Whete il t) and vy (¢} are the two nodal voliages of the resistor. Therefore,
bt 01, L) into 0,01}, we can reswrite {111} into the form of

vi{t) ~wva(t) = Ligfe)
= L () — o (). (1,14}

Hasenitially we have vsed the nodal voltuges of the resistor [0 represent the
puirent of the inductor,

B0 circuil formnlation can be augmented based on BC formulation as
ik

Mg 1, choose n ground or reference node, which usually s nken 1o be at i
pustential of zero volt, ANl pther node voltoges constitute r unknowns,

sty &, essablish KCL eqoations for all the (nrer-bramch nodes (those on the
Jetistny af Prrsnches ) by representing branch currents in tenms of node vollages
ining branch constitutive equations.  For branch that ix an inducton, e
{1420t epresent the currens n the inductor,

g X exablish (), 14) For oll intma-branch nodes (those inside branches he-
tween resisions and imdoctors),

Pamingle 2.2, We change thie cireuit in Fig, 2.1 to the ane in Fig, 2.3 by mdding
I bt £y and Lo i gesies with ) and €5, respectively. This circuil
Mrpetune meets our requirement: Ly is in seres with Gy, and Ly §5 00 series
wilh I'a'-_-

iy {3, 1-} (‘,",
R L w
3 i

Flgeow 20 KT cimcni meetng the taw prerogaisites. Shided ones ane the so-called infra-
Wiwn 1 iy

W chrcanit i b Tormmibited as (1155 The limt three equations are eslub-
Mok Bpmec on Step 2 While ihe Lt twi ure bused an Step 3 In lerms of
fosilien, the fivst three rows are derived from KL for three inter-branch nodes,
The loat twe o wre mosBifhed bianch constitunive sdquations (114} Tor twis
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imtra-branch nodes.

&y a 1] I 0 ik
i 0 O 0 0 ||
0 i 0 0 'y | =
=Ly Gly 1] | ] g
] ] —ialy Galsy 0 U5
GG =& 0 0 07wl [Cu
—GJ Gj_ G: '"'Gg 0 Ly ]
= ] =Gz Gy 0 g+ O (1.15)
i S T I I 0
0 0 0 1 -1 t il
Letting the branch current and valtage of Ly be the cutpurs, we have
g
o, e 8 . =3 [™
L] = =
[1':.;.] {U 0 Lz -G 0O ] :: ' (15)
e
In general, REC ciroun formulation can be expressed as
Ot = —Gv(t) + Pt (L1173
¥it) = Qvit) (1.18)

Similar to the BC' formulstion, V' denoles the nounknown nodal voltages in
fLEC circults, and matrices 7 € " and © £ ] represent the condue-
fanee and capacitance elements, In addition, the two matrices contain other
elements such a2 | wnd GL des vo the introduction of modified branch consti-
mtive couations {1.14),

Same s the RO Tormulation, matrix © may be singalar. We assume that
this will not happen in RLC circuits throughout oor discussion,  The same
assumpdion for BC ciscusts applies to the BLC eircnits 1o ensure that matrix
¢ i non-singular,

1.3 General BRLC Interconnect Civenit Formuolation

Far more general RLE cirenits of which our assumption o the wpolegy
of L does not hald, & more geperal formulation 15 necdald,  Modified wodal
anmalysis is yel another classicsl cirenit formulation methiod which improves
okl povalysin method by adding currenty iy inductom @ unknown varables,
The introduction o the inductance currem variables would belp keep modilied
nodal amalysis formuolation i ihe differeatinl form,
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i example, the branch constitutive equation of o mductor 15

v = L%. (1.19)

whire L s the inductance valug, IF we had 1o use nodal analysis, in (e KCL
pejuations lovolving the inductor, iy, has 0 be represcated i terms of vy, §oe,
0wt vt ifng). While in the modified version, introducing 1, into the
Wisknewirs would keep the KCL equations in the differential form. The enst,
Tuwever, is an sdditional equation (1149,

e greaseral L circuit formulation can take one step fursher from modi fed
kel aralysis, ndditiona] indwctance eurvent varlables can be removed from the
furmuilation by block Guuss elimination. However, this can be done only in s
limivan

wleg 1. choose a ground or reference sode, which usually s tuken fo be at o
poleitinl of zerg ol Adl other pode vollages constitute v unknowns;

Mg L crese weurrent variable for each inductor with certain direction defined;

Mgt A cstubilish KCL equations for all the » nodes by representing branch
ciirents of B elements in terms of node voltapes and corrent varialhles
precdefined in siep 2:

shope A, estublish the branch constitotive equation of inductance in dilferential
fowr o 1190 using pre-defined corment and nodal voliage variables;

stop 8 (optional), remove cument variables using block Guuss elimination in
o ihoiriain.

Hoops 14 ane the preocedure of modified nodol analysis on general RLC circails.
b i e powt-procedine for removal of curment variobles,

Fanmple 2.3, Fig, 2.4 shows in RLC circolt with 2 monal indoctance M
Piween Ly ond Lo Note thin Ly in the cireait does nof meet our issumgption
W 0L e, i does nal min ki serles with any resiston

Din ooriden don Cosromabmbe e chrondt ising ooditied nodal analysis, 0 and iy ane
pwis curront viaiables (o sdedition to the four podal voltages. The modilied nodal
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Figure 24, A RLL tree demonstinting misdifi ed nodal analyste formoafazion,

analysis formulation of the circwit is given by

o oou iz
i o0 iy
£ U} iy

Cyl 0 |
000 0L M|\
00O 0|M Lyl i

Gu+0 =0 0 1] o -1 ty Gy
—{ i i i |1=1 0 ity 1
B ] 0 0 0|1 0| |w il
0 0 0o oo 1 ||m|F| o | @
i I =T 010 0 || i
1 0 0 —1|o 0 || 0
Let vy be the output voltage; then we have
o
i
T
[t]=[0 00 0 1 0 0] [m|. (1.21)
1
iy
ri:-

In (1,20, the first four rows are dedvisd from KCL Gar the Gve cireled nodes,
The last two rws are branch constitutive equations of the two inductoms and
the mutial one, which are pdded bevaunse of the two extra variables, ¢ and iy,

In general, modified nodal analysis foemulation can be enpressed ay

MX() = -Gx(t) + Pult) (1.22)
/ YL} = (e (1.2%
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xit}= [:r{{:;}] M= [ﬁ E] L= ['*1‘ ":] (1.24)

where 1 and J are the modified nodal analysis variables (yielding o totsl number
il e umknowns in (1.22)) comesponding to the node voltages pnd the branch
curenty Tor Moating voltage sources and fnductors. I (1.22), the mutrices
G0 R and A & R represent the conductance and susceptince matrices
dencepl that the rows comesponding to the current variables are negated), In
(1240, €7 and £ are generully capucitance and inductance matrices of the cirot,
Heswever, plense nofe that © may be simgolar, i. e., some rows in © may be zero,
I happens when the comresponding node does nol connect o wny capocltor.
Siimilusly, Fomay be singular too, and it heppens when the corresponding branel
I Heusting voltage sonrce.

Tir gov o step further to remove (he extrs varinbles in « domain, (F.21) can
b symbodically represenied hy

where

Al i A I R
o i
o5 VIEE o
Liuing blvek Guauss alimination, # can be first writien o8
r= (L)™' W (1.27)
Woglace & b L26) with (1,270,
(|67 + O] + [WT (Ls)™ W]} [v] = [5] (1.28)
14 Remarks

W reviewe three kmds of circuit annlysis approgches: 1) BC formla-
faii, 20 LY formbition, aod 33 peoeral BLC formolation, The fist oneg,
s kmwn s inoadal anilvsts, i widely wsed in cireoit simubition feols such
e SPIECEIGA] Tor s wbustness and simplicity i implementation. The sec-
opied Bopmbatbon misthesdl is augmented based on e BE formulation and € is
aifereit Feown Bl weell-Kooawn mwsdified oodol analysis, for i does not iniro-
b dament variblbes it the formalation, Theeefore, our 500 formalation i
i compogt, nod b e nbce property that B guasintees the non-singulanty
of oot & o 08220 amider certudn nsamptions. The lasn one i 10 be osed
il generad FECT Sieuits which may also contain muteal inductinee. Further
A o can be doge ioeduce thie mateis sbee o o domin,
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In the next sobsection, we will give o chosed form far circuin responses o
RO o BLC formulations that we have introduced. In some ill cases, matrix
A am (1,22 muay be singular. When it happens, the chosed form solution will
not be available, Therefore we reiterate our assumptions w the HC7 and fLC
circuits of our interest when an inducior is present in circpits, there has 1o be
a series Tesisior with it; cach inter'node has o coapling or ground: capacitor.
Uinder these assumptions, Af (s non-singulos

2. Responses in Time Domain
2.1 Responses in Closed Form

Before procecding oo s domnin analysis, we disouss the tme domain soloton
of lingar networks denived from AC' and B LC formulations in ihe previcons
subsection. Let us pre-minktiply matrix 3 " on both sides of (1223 then we
hove

*it) ~ M x4 M Pyt

Ax{t) + A, (2.1)

where 4 = MY and B = M P, Pre-multiply « =" on bath sldes, (2,10
o be writlen ay

M) — e MAx(t) = o MBu(t)
o [~ x (8] At
ot a A By 23

Thi solurion o the above differennial equation is the time-domain response on
circuil nodes: !
®(t) = Xg+ f oW1 Bor{r)dr 12.3)
L]
where Xy 15 the ininal conditon, ©oe, 25 = 208 e,
The utpul respoase i time domain is derived from (2.3) by pre-multiplying
iy G :
vit) = Qx{t) = Qxy + Q | T Buir)dr (2.4}
L
The fiest term is the outpul at time £ = Ly, The second term is the comwlution
of the impulse response and the input wiveform. The result can be ventied by
Laplace and wverse Laplace fronsformations,

2.2  ‘Taylor Expansion in Time Domain
The muatrix exponential ¢ iy detined by Taylor expansion

d ] "
A AR L A

- il 2.5
i) i n! :
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Therefore, the solution (2.3}, with &y = Uwithou bosing sny gencenlity, can be
rEwrIien as

x(t)

i
2+ f oM Bylr) dr
0

X0+ f EM“ W puyir dr

=
)
= Xq — | {t=7)tir)dr (2.5
¥ E II. i
If we wpproximate x{0) by first ke rerms:
E=L i
X = X+ Z{TE f{r—r}'urr]:]r 27
1=t i
Detine
il
iy = ﬂj (2.8}
rl"
Xty = f[!—r:l'mir:lrl'.r 3.9
1
Therefore, -
x(th= %+ Y |oidt]]. (2,10
pmill

W can get all the ay by & Muotriz-Yector muliplications, 11 the mairnix is in
Haorwell-Bozing Formuot, the complexity of Malriz-Vector mulfiplication grows
lincarly with the nomber of non-gero elements m Matrix.

The evaluntion of x;(¢) needs w ke the seoee vector UNE) into account,
For g vector of constant sources, o(t) = o,

_|+'I
Xilt) = 5 T {2113
For w vetor of lineur sources, 071} = of,
i-t"l-i
X(it) = e, i2.12)

B+

Sources with clissieal waveforms, such as expomentoal or sinosoidal fuenction,
Tnivtees abis bl fonm representation of (2, 140). Some sosirces, on e siher hand,
e combsinations of different ones mentioned above. Coe of i kind (s prece-
wive Hoear viltage o currend source, which (o combination of a serbes of el
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ramyp inputs. Because system analyzed here is a linear netwiork, if system has
different kinds of source, we can caleulate a0, () for each independent source
alone and sum e response together.

Please note that o, and &y havie no relation to source o) and Gme ¢, thus
a, amit B, need o be computed only once. For each interested time point £,
calculate the (1), substitute into (2°10), we can get the result value,

The choice of & will greatly affect the accuracy of this method, For a given
error folerance, we want 10 find out the smallest & that satislies the pecuracy ne-
quirement. Since the value of £{f) is bounded inreal circuit(e. g, less thun 51-?:,
We consider U7{¢) is constani «, Substitute {2.11) ines (2, 100, local truncation
error LT can be approximated ns:

iill Al || Ba || £+
e {#+ 1)

| A 58 Bes || £+
(k+ 1101 — 12

LTE ©

(2,130

Here || . || is L-noemd]| . )1} o co-normi]| | [|o) of matdx. i@,‘f must be
srnalles than |, otherwise the locil truneation eror does nol convespe. Because
| A |l is a fixed vale for o given circuit, & and ¢ can be ackjusted ml_mully_m
sutisfy the convergence condition. Specifically, i7# is equal o T', the fime poant
when circuit response s desired, then & has to be large encugh such that k 4 2
is gretes than || A [ T. On the other han, if & 8 et (o Axed valoe, e g, 1O,
7' may hive to be time slepped such thal individial time step £ is small enoagh
to ke [| A || ¢ ssaller than & + 2. In summary, the smaller ¢ is, the smaller
K could be. a

For a given time pont T, the absolute trancation error ATE = {LTE, | e,

| ALM Ba |l * .
(k + 1)1 — 441

Thenretically because self-multiplication of mutrix A is more expensive than
matrix-vector multiplication in (2, 10}, and A* £ is much smalber thin the square
matrix A in terms of dimension, we can select time step ¢ s small as possible.
Thus for the same shsolute truneation eror, soaller ks allowed _

For non-stiff systems, Taylor expansion method can approach the seearcy Lrl
SPICE with ahout one oF two onder less computing time. For stiff systems, this
meethind requires small time steps compared tothe interested time imterval. 16 will
penerate extremely long stmulation time, Practically, & = 105 @ penoaili
pupiber for sl of sysiains

ATE < (2.14)
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3. s Domain Analysis

In this section, we discuss how o obtain the transfer functon matrix of a
linear negwork From the modified nodol analysis formulation m s doman, and
hosw b convert the responses ins domain i e tme dormain,

3.1  Transfer Function

The Laplace transformation af the modified nodal anolysis equations (1,22)
and (1.23) &5 given by

sMAls) — Mxg=—Gx(s) + Puis) (3.1)
¥is) = Qxia), (3.2

Recall that X is the initial condition of the time domain vector x(£). Pre-
maltiply G~ on both sides of (3,13 and obtain

(I + 807 ' M)x(s) =G Pu{a) + @' M x,, (3.3)
or
(4 — aA)x(a) = Bura) +Oag, (3.4}
ey
A=-G'M B=G'P C=G""Mx (3.5)
Therefore, we can derive the solution to (3.1} as
x{s) = (F = 8A)V Buts) + (I — e4) ' Cxp. (3.6
Tnsert {360 into (3.2); the output, ¥ (=), can be represented by
¥is) = Qf — sA) ' Bule) + QU — #A) ' Oxy. an

So the ransfer function matrix defining the relationship between the input £(#)
ind the output ¥ #} is given by

His)= QI —s4)7 & (3.8)

Example 2.4, Tointerpret the definition of the transfer function matrix & (s}, let
i consider o linear network with two input tenmingls snd three output lerminals
shrvn in Fig 2.5, The TAO terminzats are related by the transfer fonction matrix

[0 (EITTE Vilsh i |:j f {J

18] 1iL8 s

[rum] " [u].m Hﬂ{a]] [ﬁ‘ Ejﬂ (3.9)
¥aln} Ha(s) Hyls)] F

I the trunsfer function matrix, £, (e is the impulse response acoutpat ¥ when
L7 Do s drnpudse bt and the other input termanal is off™,

¥ I\Ihﬂll [CLRLIT ||1H BT (10 | O el Vb @ o Dage sssaria, 11 Dy b e 'l“‘ﬂ'lhl. B omrec|ead ik @
plilTEil siiEdi, |1 sl Dib Do s iinvnai 1ol
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-

Figure 2.5 - A lipear netwack with twn rptes: arud ilaee coipuis

3.2 Responses from s Domain to Time Domain

In general, matrix H (5] in (3.8) would be o M % N matnx, where M and N
are the numbers of inputs and outputs of the system, respectively. Due o term
{1 = sA)~V in (3.8}, each entry in H (s} is 4 real rational funcion of &, i e.,

Yila)

.F‘.r;_-li.*:l = UJ_l:H:l l:} I
_ aptaist n-;.qi T o Al
R T TR
o ﬂﬂll{a o al]'l:."; — i) ll.a'i = -T-m] {1.12)

bl = )8 — pa) oo (8 = pu) .
where a; and By are real coeflicients of the palynomial cxprrssfims of =, und =;
amd p, are the zeros and poles of the transfer function, respectively, s
Furthermore, qll the eniries share (he same denominator, In fact, the partial
fraction decompesition of H (5] s given by

k: h kll
= e o rr e — (313
B = Y m T em
o T [ Tn
7 Pt A (. B R R {3.14)
Hijl#) P +1+‘5-:'|-'2+ +]+ﬂ“

wheere A, is the i-th eigemvalue of square matrix Ay.n. ILis worth npting that
i = —1/A;, which is the relationship between system poles and gig:nvulu_:s.

Particularly, from the expression in partial fraction decomposition, lhr_l:mc
domain impulse response at owput lerminal ¥ to the mmpulse input ot input
terminal £ can be obtained via inverse Laplace trungformatin;

fl'_f[” = el i.}_;-e”l AP {315
For an arbitrary input signal st 1/, performing convolution on the impulse
response and the signal glves us the time domain response il ¥, For arbitrury

input signals o all mput termlnals, dime domaln Gutpas responses ot ¥ can be
pbabned vin principle of superposition.
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4. Preliminaries of Symbolic Analysis

In this section, we briefly review some muthematic notetions and theories
rebevamt to the praph-based symbolic analvss techniques to be discussed in
details in the later chaplers.

4.1 Matrix, Determinant, and Cofactors

Lete = {1,...n} beasetof integers. Let A denote a set of m elements,
called symbalic paramesers or simply symbels, {ay, ... 00 b where | < m <
#? il ench symbol is hebebed by b upigue pair (r,e), where < eamd ¢ € ¢
Often, we wrile A o8 un n % n (square) marriy, denoted by A, ood vse ¢, o
denote the clement of matnx A atrow r and column ¢, We sometimes use ria)
and o) o denote, respectively, the row and column indiees of element o,

dpy Gy e By
A ey O2E e B
Bl a2 e By

If m = n* the matrix is suid o be full, IF m << n? the marix is said o be
sparrne. The determinans of A, denoted by def(A ), 15 defined by

H-:I,L ﬂ:ly e
LR o ; iy

i H::f: o ...n - E E_L}P'GIJL 'u',égr-----a-ru,‘]"- E#i:l
g s - O | JERE

Here (53, 32, 0 ) 16 1 permutadion of e, and pis the number of permotations
needed (o0 make the sequence (jy, jo, .., fn | monotonically increasing.  The
ight hand sade of (4.1) is 4 symbolic expression of det(A} in the exgpamded
form, more precisely, the sum-ofproduct fomm, whene each fenm 15 an algebra
prodduct of ¢ symbolic parameters. We nofe that each symbol can be assizmed
i real or complex value for analog cireuit simulation.

Let p, p C o, and g, f © & such that |p] = |g]. The square muteix obtudsed
from the muinix A by deleting those rows nobin p and columas not in g forms
i snbarictriy of A, and s represented by A(p, ). 1t has dimension |p] by |q].

Lt .- be thve element of' A wtrow rand column & Let A, bethe (n—1) =
= 0 p-matrix obtained from the matrx & by dedeting row r and column ¢, and
bet Ay, be e g o emainx obtained from A by setting o, . = (& Then, the
determinant of moinx A cin be expeorded o5 below i way stimalar (© Shannon
ekpansion for Boolesn (uncticos:

dnt{A) = np{=1)" " det(Ay, ) + det(Ag, ), (4.2)

wivens | = 1) et LA, ) s referred (oo the cofcror of det{A) with respect
00 iy WGk it Mg, ) o the resiinireder of detiA] with ranpect ooy The



Chapter 3

MODEL-ORDER REDUCTION

l. s Domain Analysis

In this section, we discuss how 1o obtam the transfor function metrix of g
limear netwiork froim the MNA foemulation in # domain, and bow 1o comvert the
responses in s doman to the time domio.

2. Moments and Moment-Matching Method
2.1  Concept of Momenis

In-s domuin, since the Laplece transtorm of the impulse function, §{1), is
I:llh}-" , The response af o port 15 the transfer function itself,

Iefinition 31 (Moments of Impulse Response), The moments of an finpalse
respinse ane the coefficients of powers of & in Mackwrin expansion of the
tranaler function, His), in s domun, 1. e,

His) ="y mes, (2.1}

1]

I||||;|I||h|:"lllll.'Lth I ibeh sl =

e i it
Wil {‘ el Jr Mkt = |
il b rwiee i

Therrding, #a Lapiace Wansfoms ii gl by

- !
J||I I Rt | II|r AlEhIE = 1
(1} Bl
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where
1 d'H
Ty = — % —r'#} . (2.2}
k! L

2.2 Delay Estimation Using Moments

moments, delay In this section, we examine the connections of monients i
delay estimation of {nterconnect clreuits in two-fold, First, we investigate the
resson why moments give good measurement for delay estimation, Secondly,
we see how o approximate deliays, provided that o set of moments sre already
Civemn,

221 Moments: Charncteristics of Impulse Response

Moments, metrie in 4 domain, are Gghtly refated to the impulse response
waveform in time domain, Indeed, they characterize the shupe of the waveform.
Let f11) b the impulse response in e time domain, we rewrile moments
defined in (224 in terms of F{t) by using Maclwrin expansion of o~ in the
Laplice fransform (s} 1.o&,,

His) = f Hthe" " de
L1}
o | k=
- BT | ST | i) il )
= j{: (I. ui‘+dz+ + & I "+ ile
Y ot A
= ook f M E 2.5
By

hiedl]

Comparing (2.3) with the definition that H {s) = Y05, mys®, moments can
hix teweratien as;

ik =
S ;lj f tH (), 24}
1
i
my = FH{I]tlf {2.5]
L]
my = _}F EH(EMdE (2.6}
n

vrigy b the total area under the response curve H (), which s unity o the case
il e resiative Joad 45 proanded, W will discuss mome on this in Section 2.4
Tl

Sinee the recpubrenvent (s applicable o mast of the Hoear clreuits b e hesis,
we con assame that [(% H{dE = 1 The mean of the implse response,

Modei-Ovder Reduction 37

Jo eH{gyde) 77 H(t)dt = —my, is widely used o8 an approximation of step
response delays. As the. slep response in & domain is given by L H{s), bosic
Lupluee transformation properties tell us thot the step response in the time
deowmaim i [ H{#)dt, as shown in Fig. 3.1, Theretore, the 50% delay of ¥{f)

%, Bty of ¥, e medion poin of HIT)

rman poiod of §9T)

Fijppre 10 Scenario (bl the medion and mean points mismstche when e unie gl responsg
1) (scabed] is oot symmelric, 0% delay of undl sep respomse ¥{0), or the medion kit a3
Fie). dises miol iverlap with the mean point of (i),

s essentially the median point of the unit impulse response, Furthermore, if
Ht] is symmetric, the mean of the impulse response bs exuetly the median
poant, i e, S0% delay of ¥ () is accurately —m (Figo 3.2). The first moment
of the impulse response also known ks Elmone delay, is wsed as-a dominunt time
cundlant approximtion lor RC trees, Indeed, w1y provides an upper bound of
delays fior RO trees dug o the resistance shielding effect[67],

Higher order moments give mare sophisticated measusement for the diser-
Tustion of the impulse response [52]. Therefore, functions that match moments

ul the impulse sesponse are expected to give s good approximation to the wive-
lorm.

LAY Pade Approximabisn

Prowided that a set of momients of (he impulse response ane given, Padé
approsimation s o method fdu gencrates o fmily of mtional Tunctions whose
mipnients agiree with those of the mpulie response, The rational functions ane
Turthes decomposed (nt partial frictions, whose [iverse Laplace iransforms
e wwsesdd 0 comtitute the approsdmaied responmse wavefarim
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Figare 2.2 Sceeais thsiihe nediai) sl mesn potils of I (1) overbay 'WIE'II! H () s sy mmetri,
S deluy poind of ¥ (£} muiches the mean paint of B (1), 1 e, the approximation Is exael.

Definition 3.2 (Padé Approximation). Given two integers pund g, (p, q) Padé
approximation of the transfer function H{s) is @ rationul funclion

Pls) o4 os+ o8 4+ 4 ae®

LT e ; 7
Hyyln) = Q) 1+ bya et 4o Bat e

T'he Maclumin expansion of (5] agrees with the that of H{s} in the first
A A ) e, L e

H{s) = Hy4(s} + O, (2.8)

A theee are p+ ¢ 4+ 1 unknowns in (2.7), we need 10 establish p+ g + 1
independient equations 1o solve for them, Assuming that Hy,q(#) is a proper
transfer function, 1. e, p < g, we can get cocfficients in denominator G} of
(2.7 by solving the following equations;

- -
. T
il
| 4 1 g o i
I i by i " Hiéd
[ I 1y g TR v Tips | I,q
ok Bl e e A ] hl,l 1
PRBE, b i b R M= A r iy
i O pr Ty Pl |
Fiy
i1
”l'I pgri .J“:Il vy

L&)
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And the coefficients oy of numerntor {4 satiefy the equation;

|
g mg 0 i 01 &

Mlo ™ ma 0 - 0 (2.10)
. My ey Wigog <= Ty

Equations {2.9) wod (2.10) can be verified by honoring the fact thal the first
P+ g -k 1 moments of f 4] moteh thase of H (£}, 1 e,

His) = ap 4 e At o g

- ol
0| s) s bys? oo st
e L 2 LT T T e IR 1 AL v 8 4 |

where r{s) isa polynomisl function of 5. Multiplying hoth sides with denom-
inator 6 =), we have

5+ )8+ g8 A+ o aagt® = [ f by bys® oo 4 i 7).

! [rnu et T I R le,,.l,fr"""i' 4 rl::a}H”+“+|] [2.12%

By equating the coefficients of powers of 5 on both sides, we are uhle to write
the two oquations in (2,95 and (210},

Example 3.1. Given g set of moiments
=L mp=2 mp=75 wmy=2 {213
i nbaim a (12} Padé approximaton, (2.9) can be instantiated as
mg my| [] _ |tz
my oz fh| T e
Inserting (2,13 o the: eqution above, we hive
1 2] [l 3
2 5| |tg| ~ " {20f

Therefore, by = — 10 ond by = 15, And o ger the nomerstar, (2,100 i3 instan-

thited a= i

ag| _ frmg 0 1

ail — lmy omg| bt
A I

LEIT] a 1 [} 1

a2 1 1)
Mo,y = | and = —H, Thus,

Pia) 1= Bx
Hiale) m s e ety 214)
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223  Partial Fraction Decompasition

In order o gel the full response waveform, affer getting rational function
1y, 45} from Padé approximation, one needs to derive the partial fraction de-
composition of it Assuming thal the input = ¥, = 1/1{s — py). the partial
fractiom decomposition of Ve @8 given by

. . Pla} 1
Vi = "p--a"”"=ma~—:ﬂ:
i—py &= A=HRy
if "
= 5N, (2.15)
&— 1

d=ll

The ¢ roots of £{s). p+ -+ Py, are ohiined by solving the polynomial
function (s ) directly, And for the residues &5 n(205), since

P _ <
H?:n{H_F-'I;' Z*"Fﬁ1

a=il
we multipty factor (& < py | on both sides and obitain

Pisy 4 K, i
Mo be—m1 — pj) + .
I]:L"'l‘#l' {5 = ) |=§;l‘-_f 84— {a Pj) 2

T derive &y, we substitute s for py in the shove equation, s
= Plr;)
]._Ii-l:l.r,ij (P — )

Example 3.2, Continuing Example 3.1, we eviluate fhe parial fraction de-
composition of H)2{s] mi214), The two roats of Gs) are gy = (112 amd
py = 054, Assimming thut the input is Vi, = 1/(s — 2. then

Ky (2, 16)

1 —8s |
_ = —{1.3
I e TP T y
1 —Bs
TR .. S = —(.0017
: (s = 0.5 (5 = 2] |, _pya
1 54
; P | L U = [,
ka (4 =002 =2} |, o b

Thiuas,
K ; 047 namy [t
1"u|.l ”I_:'qn “" ¥

3T a=012  a=00d

Model-Ovder Redactivn 4]

2.3 Deriving Moments from MNA Formulation
Detintiton 2.2 can be readily extended to the matnx form for multi-pot

sysiems (e g, Fig. 2.5). We do =0 by exomining the MNA formualation method
given In Secthon 1.2, We rewrite the formulation in time domibn (1.22)
(1.23) here:
M (1) = =Gxit)+ Poit)

¥t} = ALl
Assuming hat x ({1} = 0, the Laplsce transfommation of the above two cquiations
are given hy

aM x5} = —Gx(z) + PU(#}
v(n} = Q2x1&),

x{a) = (G + M)~ Puis) {217}
¥is) = Qxia) 2,18}

By substituting x{x) for (2,17}, we can write ¥{s] as:
¥ia) = QUG + M) Puls). (2,19)
The transler function in (2.19) is defined by
Hig) = QG +sM) ' P 2.3y

And refer wo Definition 2,2, moments of H 4] in (2200, 1. e, the coefficients of
Machvurin exponsion of f{a) are given by

My = {-1¥QIG'MYGT' P, (2.21)

where I} £ | < oo

Cormputation of moments fequires & (o be dnvertible. This requirement is
et ly stisficed by most imterconnect circuits in which each node as o DC path
fir the prowmil.

24 Deriving Moments for RLC Trees

In thir pretebonis section we shiswed ihe geneval approsch 6 compuiing mo-
ivienits oy limoar circui. Tn this section, we demonstratie the eaie of mormen)
compuitations for a Temily of special lneer coicwits, BLC treon,
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In (2.21), suppose we consider all the entries in the unknown vector X (=] a5
OUIpULS, ie., § is an identity matrx, we have

Mo = G'Pu {2:22)
My =Ic:"nfc:-lp=a-wm (223}
M o= ([IMPG'P =G MM, {2.24)

We find out from the equutions ibove, that My can be sofved in o linear equaticn
(T Mg = P 12-15}

And furthermore, higher order moments ean be evaluated by utilizing the pre-
VIOUS (S, L 2.,

ony = Mo 226
Gva = M, (2.27)
GMu: — MM {2.28)

Wi investigate on low to evaluate moments ieratively, Firstof all, let us stunt
with sy, To stbvie for afg in (225, we notice that matrix &7 is the admiltance
matrix of o resistive tree derived from the original RLC tree by removing all
the capacitars wnd inductors, The inputs, however, are kept unchanged. Fortu-
nutely, for most of the RLC trees or ree-like cireniis in the thesis-wise soope,
thee T solution is trivial. We will show this in an example lner.

A, now % supposcdly given, bet look ot how to derive M trom A, Refer
o (2. 28), matrix (7 is not changed, 1. ¢, again we need to solve the DC solution
of the resistive e, However, the system's inputs are now changed 1o M,
I i 1,240 we showed that M iz in the form of

B i
w={ 1

where matrin € is the conductive tatrix, and L s the inductive matriz, Due o
the way that MNA formulation defines the two matrices, entrics in ' carpespord
o the currents fowing through capacitors, and entries in L cotrespond o the
voltages across inductors, In other words, O i part of the KCL formulation,
while s o part of the K¥L formulation, Therefore, i we partitian M ady
necording to he composition of M,
e ool [™, le o

|_.1..I',|‘ l” i (2.29]

i LJ L
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then in M A%, which is also the right-hand side (RUS) of (2.28), foria n veotor
of current sources, amd Vy is 2 set of voltage sources. An entry in [ i g
product of capacitunce and the §-th moment of the voltage (M, ) aeross it and
an entry in ¥ is a prodoct of indoctance and the i-th moment of the curmn
{M.r}l through it Accordingly, we con generate o new “resistive ree” from the
ol one by adding cument sources and voliage sources ot locations of copaciion
and inductoes of the orginal RLC tree, respectively, and peroing out the voltage
mources in the old “resistive tree”™, The solution to such circoit is also trivial.
wne can evaluate bidisch currents and voltage drops inan inverse breadih- i
search ({BFS) fashion, starting from the leal nodes; when the mot 15 reached, o
BES or DFS (depth-first-seprch) ean be performed from the rool 1o the leaves
1o apdate node voliages.

l-.'a.umpl:lﬁ.i The cireuit given in Fig. 3.3 i 2 peneral BLC tree. The inpan V),
i umit impulse function. An impanant propeny of the RLC ree i that each
node in the tree has a DC parh i the ground, and this path bos o eo (hroagh

ihe voltage source. In other words, no resisiors or inductors ane connected 1o
ihe groond directly.

-3 I‘Iq

Vinla) L7 r"|‘~ IJ a-l[= O

Figeowe 1A Thearigingl RLC treg in Exiaple 19,

Fle symabeslic MBA Fformulation of the cireuwit is given by

[ i i i I M ¥ Vi

O b Ghu =Gy 0 -1 0 L L {i

i 3y (¥ i { 1 Vi {1

[} 1 1 e 0 1 l"ar {1 {3:30)
1 1 1} o s 0 ! i

il i A AR T /| I 4 i
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The above equation is written in = domain. Comparing it with the time domain
counterpart in (1.22); we have

o0 0 & 0 oo o0

Y T R 1 S R ¥ b Gy —CGy b -1 @

A = g 0 o 0o 0 0 -c,_ 0 —fip 3 b O 1
T oa 0oy ¢ d —1la 0 0 0 0 =i
0O a o 0 L 0 -1 i 0 D a0 0
00 00 0 is oo -1 1 0 B
23l

Each unknown in (2,304 i% a rotional function of & doe to Cramer's rule (maore
an this in the next chapter). And the Muclaorn expansion is given by

¥ = ;l;u*,._,m +mm:'r+ mm:' R {2.32)
W = iy |":J:| 'f':ljj__l_ m{“ﬁ:‘ 2 L (2.33)
¥ = w‘] +'m“’:'.*r by et 234
i = mﬂ Wl g ml eyt i.ll-iqﬁ:' L (225
h = :ru”I +Hil“l|:| +m”'] e s (2.36)
s = Tn‘llh -I-'I:IJ”“R-I-'"I“E‘I i (237
According to (2.25),
-
T:LE,.F' :::,!-,m mﬁ,m mhp‘] m::J'I" .m,!f“’]
is the solution to the equagion
v
Gi b0 01 0] | My Va1
1] Gy =G 0 =1 0 T“E}u {i
0 =Gy G2 0 0 1| |my"| _| 0 2381
oo I I | R L 1 '
-1 1 0 o 0 ofl] M 0
ik

0 0 -1 1 9 0 '”‘3,,3

O i we go by inspection of the “resistive tree™ (Fig. 3.4) obtsined from Fig. 3.3
by remaving all the capaciiors and inductors. I is irivially seen (it voltage sl
any node of the cirowt 15 Vi, and thens s oo curmenl from @) 0oy of from g
to g, Therefore,

Mi= [V Vi Ve ¥ 0 0] (2.39)

W cin verily thal i i the solution o (3 IR
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Figre 340 The “Fesietive inee™ for compating M o in Esample 3.3

To get
T
My = [miv':' 1'1'|.'il|flt’.I rrr‘,l{':' m[,"'” m_ﬂlhl i=+[|n:|]

wie utilize (2.299:

:I'r].[v”‘
a0 01 0] |™
0 G Gy 0 =1 0| |m
0 =Gy @ o 0 1] [m™]
0 b0 00 - mg"ﬂ B
L1 0 00 ol
0o 0 -1 1 0 0 _m{‘"*
(Vi
0
o000 o o™y "
) 1]
0, 00 00 FHE:_“ Oy
¢ 000 o offm_| @
0 0 0 0 0 | T [cumi¥™]
000 0 Lol ln Lymtt)
D000 0 Ly _mlf',g] Lam(!

Accordingly, we modify Fig. 33 by zercing out the voltage souree o) and
replacing capacitors with current Sowrees and inductirs with voltage soumnes.
The modifiedd cirenit is depicied in Fig, 3.5, Again if we go by |nspm:l|un. the
solulion t the new Tresistive tree” is trivial: fo isequal fo —I::-;frlu. " and Vag
i umiuely determined by £ /0 have gleqmng all the down-streism caments
ol tey, g b simply By — € .rnf,‘"'.. After we ged all the branch currents wnd
voltsges, we necd another trea-walk from the rood o inally get node voltages,
e . l"| = f| Il"f.-r'|, i-":; . 1".| L] 1."r||;g,. V= H; i “':J.:ll and V) = 11'1|+ 1-"’3.4- Thass,
these new iode voltages and voltage-soirce currenls constitute the firs-omler
indmen vector iy And these vidies g hen used (o evidute new voltage wnd
current souiee valuies Tor the nest moment Comgiritatioi,



46 SYMBOLIC ANALYSIS AND REDUNCTION OF VLS CIRCUTTS

T
i L:;'.ul.'” ié Gy i L;mm

Figare L2 The "resistive tree” modifi ed bused on the original RLC circwdl by serding oot npats
ard replucing capaiidoes aml inductars wiih comend and volinge soorces, respeciively,

2401 Remarks

The moment-matching method 15 summunzed sy follows: given an RLC
trce, ome first compuies a nomber of mements teratively, coch iferation is o
et the DC solution 0 o “simplified” mesistive tree-stroctured cirouic. After the
computadion of moements, Fade approcimation 1= used to find o rational function
which matches the moments just evaloated. Finally, one can use partial fraction
ibrcomposition on the rational function and inverse Laplace transformation o get
the approzimated waveform. This work s the so-called asymprotic wavelom
evalugion method, or AWE, invented by Pillage and Robrer [66] in 19940, The
complexity of AWE method is (e - n), i e, it is linear in rms of both the
mumber of moments desired (e} and the sumber of nodes in the eircuin

An explicat sedition to the circuit with capacitors replaced by current sources
aiel finclwitors by voltage sources —the so-called “companion network™ —is
alu possible for cireait configuration other then stict RLC trees.  Anv such
compumio circuii for which o tree can be specified by only veltage sources or
i coetree cil be specified by only curreinl sources and o mare current sources
in the tree® has i trivial DC solution. For instance, the coupling interconnect
crrenil shown in Fig, 3.6 can be solved explicitly, becanse all the cument sources
i by aee b the eo-tree, and only resistors and voltage sources are in e ree,

A Realizable Topological Reduction Methods

T b last wection, we shwed (hal moments provide pood approximations
tir imerconnect cirouin responses, Essentially, the more moments are mmtched,
thie e aceurmte the approximation may beeome, And this is i AWE[G6]
i mamed, Alihongh no igoroas prood could be given, it las already become o

T o tjekwrk o which o tree can e specil ol by unly vollige sarces, Thes he sl wdiage vun he
trbvially evalusied fiv o one-way reeomnil. Thas is due s KL, O ibe ilier hasd, i s netwenk Bor shic
o bt i e sl el Dy amly coreemt siuroms, (s curmenie i svy tiee il ces e sivlly sl vl
Ihiva e ilas s BCLCL Tipilsaviiii, bl fie ijeaie olmisill swsoes g e ile wos, il -u-..l.ul' slidije i i
Trviniic b, of sbajui i lisi)y il vy agien, iy D dgiioiily dvaisslind s well
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Ving (5] SJ:;""""“"‘ i \

=7
-
W
o
-'I-(E:
L !
i

La}

ik

fipnte L8 Nlusteation shewing o type of mes-tree clreut conll gurtion kavieg tnvial T s
litpowss: (0} A RLC network: (b) the compaison notwark of (a) for which all the ks can be
spevibied by currenl saurces (or capsciars i the originol perwork ),

thumbrule, Anobyioos drawback of AWE, however, is that Padé approximation
il nses may generate unstable poles?,

Tor preserve the stability and passivity of the original circuir, realizable re-
daction is preferned,

Dwfinithon L3 {Realizable Reduction). A realizable reduction method pre-
wrves the stability and passivity of a given linear network by prarnntesing thay
i pediced models are realizable, i, e, oll the RCLK elemenis in the reduced
network ane posibve.

Fealibility of impedunces or sdmittances is 3 very hard problem in network
eyiithesis, Realizablity checking calls for o very complicated procedure called

" el praiiater Dot (e he somme gideisk |ocall s ihe pighi-hald ol ihe compilen plane
St poben i wocoilled andisbdo iles. Foe o stable sysieo of the sy o bxsaled, e onipu| st gl be
Pavsinbodl, Sl this Ls ol en Tior el mssems. e e e paisd iion decosmposiion mivsdoel
I ot 300w gl rntiad w iy wyatennn wiily pailes o sl lght bl cossples pling i e
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“positive real”, We will postpone the definition to Chapler 7. In this section,
we review some realizable reduction techniques. Realizuble reduction have
been attracting a lot of attention from researchers. Although these techniques
are state-af-the-ant, they still impose various limitations on configurations of
reducihbe circuis

31 TICER

Shechan proposed TICER —a reafizable reduction method for RC circuits
in 1999{74]. 10 Sheehan's implementation, @ r-terminal star netwaork is consid-
ered. A hranch consists of a conductance and capacitance in paraliel —deooted
by sy 4 i ) g For the i-th branch incident to node iy, Some elaments my
he misstig, in which case the comespending 7, ) e O is 2emo, The configi-
rution covers generally all RC networks. However, no inductive clements are
illiswed.

The respanse of the central node when a sicp voltage is applied fo the i-th
fermminal of it, ull other terminals beng grounded, is given by

G“_ (G.J: f;lk) (i
halth = ==+ | == = == | o .l
Liplt) = o e i (RN
wher
=] L o4
Oy=Y Gu Ly=Y Ca and no=ct. (32
=1 =l '

Since 1, ks in the form of time constant for general step responses of RC circuits,
it is introduced by Sheehan as the time constant of node ny in the circuit, Sinee
ihis time constant is independent of which neighbor or combination of neighbors
is agitated, it 15 the characteristics of the node. nodes can be grouped in terms af
their time constants: nodes with greatest and smallest time constants are called
slow angd quick nodes, respectively, und the others are called norma! nodes. Thi
classification can be quantified approximutely by using some conversion of a
range of time constunts 1o a range of frequencies, e. g, f = 0T

The imporiance of this classification comes from the fact that both quick and
il nodes can be eliminated Trom the network without significantly alienng its
hehaviar in the frequency range of interest. Beginning from the nodal equations
il o RO metwork in o domuin:

(aM + )X (s) = Pu(#), (a3

or
¥ a(u) = a(a). (3:4)
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Fnrl.-firrqul'u:liy, assume thut the node we wish 1o eliminate is the Lt node .
Writing {3.4) 0= a block system

¥ ¥ 3 I
¥I Gy +aCn| =] © L) )

We can solve for o from the second block equation and substitute it into the
first block equation 1o oblain

(F = E} == {360
where
(i + #0050 (Gap + 807340 o !
E;' = L] ¥ i o ik +3€.Jl
3] EH o= ﬁ:." und Fy = —EN " Ig,ﬂl... T tj?}

I these equations Gy and Cy are defined analogously 1o the previous discus-
shom, §. e,

M-l =1
Oy =3 Gu and Cy=3_ Cy (3.8)
] =M

Our goal is w realize Ey; with pasitive RULK elements. If we extend Ein
{37, we hove :

H.',‘ _ c"k“'..l + {C-'.;If-",k + L\'r‘*{.-',l-':l a f..-'.i‘f-'..,;-ﬁz
Gn +alpy '

We now discuss the two exireme cuses,

I Quick Nodes. node ny, is-0 quick node, i, e, 50y <= Gy, In this case,

::'«' f ol = @n. Therefore, we approximate clement £,; from elimination
i

(29)

Culip | Gulin + GO,  CaCi s 4y
b G L

T realize L the second-order term is simply neglected; henee,
Ginlgi | Gulli + GiCa
Gn HY .

Pl bt Baution can be: transloged into o procedure for physically modifying
the circuit. To eliminute o gquick nocde weg from a network, first remove ll resis-
res il c:l_;ml:llnn: connecting other nodes (o node g, Then insart new resisions
] capacitors between fommer netghbors of ny, sccording to the following two
il : IF moche v, and oy had been comnected 1oy, taough comduiances ©7,,
ol e g, Inmert @ comdietanee G800 G T mode iy i s copaeiter O oy

and v g Dl @ conduetance £ 0 g, then e copieitor of vidue €0 Lo
Between g wsid i,

Eyy =

H.'J =

(3.11)
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2. Blow Nodes. node my 15 8 slow node, e, sCxy 3 §n. In this case,
G + 80 = sCy. Therefore, we approximate element E; in (3.9) by

(TR T + Gmﬂfk +G11r;l':-";, e C{LL‘}J.H
aln . Ly Gn

It is worth noting that, even though (3.12) con be realized by RLC in parnllel, the
to-he-realized circnit does ot preserve the DC solution to the original one. This
is because the 0-th order moment is not matched, 1, e, GOl + GO /Cn #
Gl i /G, To preserve DC charactenstics, GGy 18 used in place
of whatever constanl tepms come from the expansion.  In onler o prevent
cansing ringing waveforms due to the co-existence of inductors and capacitors,
G.'p.:(l‘.jt,l"&[:_r-.l is nid incloded in the realization either; that is,

E','}' = {1]1:’

] T L] 5
gy, o G0k + GuCa | Cain, 3.13)
Cn Gin

From this we get the following slow-node elimination procedure. To efim-
inate @ slow node n from o network, first remove all resistors amd capacitors
connecting wny nodes 10 node 1y, Then, us before, if nodes ny and 1y had
been connected to 7 throagh eonductunces &g and G, inserl conductance
GinG jie /i from n 10 1y if nade ny had o capacitor Ciy to 1y, and node n;
had a capacitor Oy, 10 ng, inert capacitor Ce Oy /G between nig and 1.

L1 Remarks

TICER employs Gauss elimination a5 the foundution of its node climination
strategies. And Gauss elimination is mathematically equivalent to -2 trans-
formation in graph theory. This wpic will be fully discussed from Chapter 4,

The moments of £ cun be.evaluated easily from (3.9)

! il o G {G,Cj + ) — Gl
Gy Gn '

Cenerally, one can not guarantee that my = 0. Therefore, TICER is no able
to achieve the realizability and Ist-onder moment matching simultineously.
As 1 direct result, the coefficient of = for hoth the quick node and slow node
elirmimation in{3.11) and (3,13 does not mateh ey in (3,145

TICER'"s sceurney control is achieved by setting thresholds as the selection
criteria for hoth guick and stow nodes, Plus, it ia o firsi-omder reduction methesd?,
w0 It 16 ot devised 10 achieve high reduction ratio (< ®%),

{3.14)

.'.I:ll;;l:l:!-!l.jﬂll-*llﬂll' | il vl if- |I||-ulll

Model-Ehider Redinction 3

3.2  Realizable RLC w-Model Reduction

Given u tree for which each branch is a RLC = model, the two fundamental
mlugits w:nd'tin the trer is series connection (Fig. 3.7) and parallel conmeotion
iFig, 3.8). There is o way to reduce the the original circuits in either topology.

e O Ig Oy Ly
¥ I AN T "'-"'—"W—I
n T ‘:‘xa E}.—I I ..J- '."J:-[“-

{a}

i Os Ly

i)

P L7 Two m midels comuecbod inseries. (o) The arigiral cirevin (8 tie reduced claoal

s Ly
AR —
g "Cr‘.‘ 'rfl:tT-""* n Grr l'—"r
1‘|I| - _T r-ﬂ_i_..l“
I__'lf-'r. g 2
I 1T
it} ik

Flgne L8 Two m iemdels connecied jn paralie], {a) The ariginal cicoits (b) the redoced cizcait.,

Phe reduced madels e realizable and keptin the 7 stroctre. Funhermiore,

e deieing-point pdmbttances sl the ports G b of reduced @lrcukts meh il
et gghmninls wp i tha e oader,
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Faor the seres iopology, the driving-point sdmitanee ¥, al o can he depived,
hB

LE i&!52+ r.|:;|a.|H gt o llﬁ.’lﬁ
by & b5 4 bas® 4 s 4 byt

= T &4 m,-;az + Trl.:fsr'1| e SLILEM

(1.15)

Yo =

where

ay = Gy (G + Cs + Cy +C5)

ag = (0 + Oy + O) + e (O + Oy - Cs) s

ay = gl L4) £ + Craldy |:'r.-|;]. + ) (Calg + I':':;Lg]

+ Gl ”-2 +-Lad,

dg = Gal (0 + G Calg + GG {Cy + Ch) Chla,

iy = GaleyCa (O 404 ) Crla Ly,

iy = Cislrs,

by = (G Gy O Gy (0 + C4)

By = [0+ O + Galdy (O 4+ ) Lo + O (L o= L),

By = {GqLly+ Gka) (O + Cy) s,

by = Gy + {-1.|:| iy laly. (3,16
After we get the coefficients, the next step is 1o assign values 1o the elements in
Fig. (3.Th

% 3 ayly — apha
iy = — P = — 3
Gy i S by L
oy _ tiba—agly {3.18)

Gr=hen =7 wa,
Since
iyl — atoby = E-'zfs’s{lf{?a + O Gy + 210 + Ca) Calia
FCH G2+ Gh))
G0y (€3 + 208 + 265€0) (€5 4 Galis L)
+(C + Ca) O (Ch £ 20205 L3)
+ CEGty (Ly + al),

thyP — gy

by dlefimition the reduced 7 mide] 18 reatizable, The driving-poimt admitiange
b vy dm Fie (377 i given by

V. O Cy 4 Coy) 8 4 Cy Coy® 4 Gy O Oy Lo (1)
. E.II' i 1 I|‘ﬂ‘ i t'JI||: I.u-‘l.l 'I,
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e can Turther verify, using the values given in (31703, 18), that its first three
meoimeents match those of the drgingl carcuit, Loe., wgomig ond g in (3 15)

For the paralled topobosy . everyihing 15 the same as the scenano of the semes
wpolopy, except thar the coeffickents (and thus moments ) of the sitional funclion
in (3.13) are difforent from {3, 16),

Equipped with these twa kinds of realizable iopological reduction, one gan
roduce 8 RLC m-modeled iree of any topology in the bodlom-up fashion, Ul
timately, the driving-point load is gpproximoted by » single KOO r-model,
The response af the driving-point thus be evalusted using any sute deloy cal-
cilamers.  However, (0 evaluote respotses. ol any node i the tree, we have Lo
cvaluate mansfer functions for each branch of the wee when doing the reduc-
tiom, wnd propagare Wgher-level transfer funetions all the wiy down to the nodes
where respanses are of inferest,

This con be hetter explained using Fig. 3.9, Transfer functions (o my (o
anid 112 can be wivially obeained singe g oand sy ane leaf ondes, Suppose e

ny
—4
m..;' ny Or L L]
Diriver iy Y R -
L) ot }f-. % - [ s =
. W Y I 1

Mﬂ‘_’ ﬂ__l iz

Fopare 1% Transler funcison evaluition aml proguegation. Easch brunch m the inee s o BLC =
III|I|||'|

twi iranster functions are availible and denoted as 5 (&) and fiz(a). And the
e pnsder Tncthomn from 1 oy can he easily computed after the two dowmstream
Fernhies at g pre merged using the given procedore, 1§, e, it s o compote the
pespickinie Al the punction node of two seres-connected m models, Therefore, the
comnphitation of wriasfer functions of beanches wre conducted along the boltom-
g redwetiom, ond when w05 of interest, the transfer Tunction from the driving
sl B vy i e product of all thee ransfer functions within the path from the
ibvineg awacle qo wrg. Since the circuin is in ee structure. such o path Bs unigque
aml graranteed present,

Lowniinia .1, Ciivew pwee ke-th onder stable frangfer finetion 16, () and H i (2),
thigtee dn o kesthonder atoble Dronafer funcilon I Ue) which preserves the fiest k&
piramrierny af 1 g



54 SYMBOLIC ANALYSIS AND REDUCTION OF VLST CIRCUITS
We will discuss more on this in Chapter. 7. In the following we use a 3nd-
order cise as an example! suppose
14a;9 +ﬂ_.|:23-'2 1+ epps + ngpsd
L+ byps -+ bygs® + bps® 1L+ by 4 byas® + by s

are both stable, [, H ), can be approximated by (3.20), which is alse sable
anad preserves the firse three moments:

Hijla) = Hiila) =

| 485 + aps®

i = ) 3
ikl#) I+ byps + bpas? + lyge? 3.20)
wihire
iy =y by g =8 ags -+ agog i3.21)
IIJEJ_ =b.” +IIH Il,1=5j3+b_|¢g--i|.l_1]-flk|_. [3223
321 Remarks

The realizable RLC = model reduction was firsi proposed by Yang{102],
The methoul 15 ohie fo aclneve realizable redaction, and the reduced models are
puaranieed stable. However, the methid does have some limitations, The first
limitation is on the geometry of (he reducible cireuits: i1 is only applicable w
RLC x-modeled trees, Secondly, the realizable model has o be one-port only.
Tioobtain responses of internal nodes of a troe, adl we can get wre reduced miodels
(rransfer functions), not realizable reduced cirowis, whach are more destrable

A3 Scattering-Parameter-Based Macro Model Reduction
231 What are Scattering Parameters?

To fuerlstale understanding of scaltenng pursrmeters, we borrow an idea from
billiards, or poal, One lakes o cue ball ind fiees i0ap the whle at a collection
of other balls. After the impact, the energy gnd momentam in the coe ball ix
divided between all the balls involved in the impaet, The cue ball seaers the
statiomary tasger halls and inowm is deflected or seasered by them.,

In & distributed circuit, the equivalent to the energy and momenlum of the coe
ball is the amplitude and phase of the incoming wave on o port. This incoming
wave is segrmered by the cirooit and i1 enerpy is partitioned between all the
possible outgoing waves on all the other poris of the cocuit,

Definition 3.4 (Scattering Parameters). Scatering parimeters, which ae
commenly refemed (o a8 S-parwmeters, ore a parmeter set that melages those
vorltaagge woves (o ) seattered or refiected from the netwiork Lo those voltage wavey
(0] incident upon the network. Particularly (or the 2-port network depicted in
Fig. 3.11),
1 S M| [ q
["Jl‘ I-"‘"n o ['u_ (B
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L u|:“'.. ¥
=gl vt

by=—o

ez 7| Pm |7V Zy
| MNetwiork

Figare T00 Tt network showing Inelibenl waves (ug, ag)] and refbeted wases (&) by ) ised
in scattering parameter defi nitlons.

& 5y isthe reflection coefficient of the incident woltage wive oy,
» Sy s the reflection coefficient of the meident valtage wave a4;

= Sy3 15 the transmission gain from the incident voltoge wave ag 0 the left

pirl
& Sgy is the ransmission gan from the incident voltage wWave aq 0 the nght
port,
In addition, the wal voltage waves at the two ports are
i = ap+ly (3243
Vo = au+by, (3,25

andd thie curments at the pons are defined as

10—t (3.26)

h = St (327

wheie 2. 15 the characteristic impedances.,

The dehnition can be casily extended for r-port network (n > 2),
Suppose 4 network hus noports, then the S-parmmeters of the network will
b wonn = w muiieix, - Aceording o the defmition,

I
S {rfl- na=t 1 BRA = Bcy MAL R .-f'} (3.28)
d

wie connect ull pons by resistors whose resistance are cqual 10 their respective
Chrmctersio impedances, which mokes ey = b lor & = 1,2,...,m Then
et diitial icident wave af port § e anity, 1o, g o0 1 and messure reflechive
swaves of ol port by ford = 12,0 n, From above definition, we hove 5,; = {0y,
I ihdi weny, win wdl] s 6Ll the S-paaumieten of the network
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Sofur, we haveintroduced S-parameters and admittunce matrix (¥ -paramesers)

of linesr multi-port networks, Note that we have used different sets of indepen-
dent and dependent variables for the two Kinds of parameters®, However, all
purameter sels cantain the same information shout o network, wnd it is alwuys
possible 1o calculate any setin term of any other set, For example, S-purameters
can be writien in terms of ¥ -parameters us

S{a)=(I+¥Y™I =T} (3.2%
And alternitively, ¥-parameters can be represented by S-parameters;
¥{ay= (1 +8)" {1 - &) {330

332 Scattering-Parameter-Based Reducthon

W-f woulil derive the reduction merely hased on S-matrix firse Amdd we will
anlalm the result using the original multi-port network on which the S-mtrix
Is defined. Let us start with the most general case in (3,31}, where each entry
in the S-parameter matrix is a symbol (full matrix), We want o eliminate twao
independent variable o) and a; using Gauss climination.

:‘I S S Fg e S o
t:a G2 Sp Sy oo Sy | |ew
I.I' == |H;;| Sﬁd -IHH =t 15']“. e i f:"'al]
by, Sut Sz Sy - Sin ll-l-n

From the first equation of {3.31),

_ b - Sieng — Signy - -0 — 8y 4,

S '
I’tupl:ﬂm:- g using the above equation, the Tt n— 1 euitions in (3,31 ) can be
rewritter a5

by — M Sy — Sl iz ]
m q — Sz Hﬂ_{'.lﬁl_ﬂ vie Ba — Sipom il
by —Eh-;ﬂ - Sy~ S.E_ILE Ry oo _lﬂ.-é.“_ 5 i By~ f&u iy

i)

{3.32)

)

bt ] [t TS T |,
(333

e |I-l"|"llll'11- imahdenid e nd el wares ok sy
Prenbaliosst sl Ve priben | yaraides iy 4- lens
IrrllIHI-’-d|‘Il"iﬂllllﬂlhﬂllFNHPIHIIIIUI_hJ|Mﬁ|*|M|H e iblea i 3 i J.I:r:;“h
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Mow we o through another similar iteration to eliminge 20 in (333 we

have =
[ e S'M iy
] = lassediiesweslie E i (3.3
f_;“_ Sﬂ.‘l Hnu. iy
where
: by &y ( "-"I.S:HI) Sy
b= by — —— — (b= ias)
&1 *7 "8u J SuSa — Sudn
and
§|'J =Bt —Sealpln + 8808 + 8151285 - S.]S]j.gn. (3.36)

51150 — SipSa

In (3.35), although the matrix size has be reduced by 2, 5, is still related w by
and by As ity umd b are used to represent ap and ag, it is impossibie oeliminate
ery mnd g without imtroducing by and by o the reduced system, except tiat by
and by are zero,

We cun continue the elimination process o further reduce the size of 5-
matrix But let us stop here and turn tolook gt the physical meaning of slimi-
nuting twio nndes in S-matnx from the cireoit point of view.

Thet netwerk reduction problem based on S-parometers can be defined as fol-
Fowes: given a linear distrbaited-lumped network, find amultipon ropeesentstion
of the petwork as illustrared by Fig, 3001, where the multipodt is charactenzed
by its S-matrix. AN oodes inthe network are intermal io the mulipon excepd il
nisde connected 10 the driving source (nyand the koads of interest {1y through
rion ) These extermal nodes are specified by the user.

&0

Figurs LT A sl mpisseriation

T olstisinn wich w mullipodt seprosontation with m extemal ports from an
arbagrnry distributed- lumged wetwork of g onginel nodes, the network is rmduced
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by merging the nodes into the multiport one at 2 Gme while keeping all oser
specified nodes external. There are two hasic reduction mies:
Adjoined Merging Rule:

Vxl = ax -'-I'il_;vf:I Vr: = &y, + b}-’.
4%
p—— ;
X

- b e

L |

Figare 172 Merge ibe two nebworks denmied by X wone 8l Yiww 0t two perfoctly intereon-
mocied nodles vy, and my

Let X oand ¥ be two ovultipon network in Fig, 307, 1F the two networks
share the same ground, but ae por connected af 5y, and ny, the S-matrix for
the two oetworks are given hy

-SYL.’h .5'_1;1_1':, s S‘i;llv;'m 1] 1 L
Sxgxy Skpxy v Sxgx., D
i |Sxaks Sxixs o Skaka O 0 - 0
0 0 0 Sevy Sy o Snv | "
0l ¥ N ] Svaw iwm, Sm..
e I'-r n ﬂ ";'r:\.lll- '{'“Ju Yg T ‘1&-’ ¥a
1337
i which,
i f
B = [.-:_1‘:-1 yy v Xy, OYy O e U'l-'.l] i
b= (b, by cor bx, by By oo Dy, =
S = 0 if mye X and npe ¥ (358

Mow if the twa networks are perfectly intercaniectod o # y, and sy, then
the voltages of the two modes are equal; wnd for the central node in between,
KCL holds, Therefore, besides (3371, we have two additional equations; 1. e.,

ax, + by, {en, f By, 1 L (1.t
oy = by | oy, = by,

r - 0 1dn
e E4T l
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[Ff::.'] 3 [1: ﬁ] [‘f.;'.,'] ' (3.41)

because iy, sod iy, are sctually the same node, 50 Zy, = .
Insert (3.41) into (3,370 by replacing 5, and by, . we have

LN

[Bxix%, Swxs - Sxxw 2L b
'E‘.x;g.xl '?xé‘x.l L Sx:‘xlll D I.-' .0 D
Wi Mg e Bde. B¢ M 0
W= | L i o
r IR 0 Svivi Srwm v Sy,
0 [+ TS 1l Swre Saw - Swin,
|0 e 0 Sy Sww o Sl

(342
where i o
HE@ by oo b, @ byg = bng| .

Mate thait in {342 only boxed éntres are changed,
Comparing (3.31) with the above equation, if we eliminme n g, and iy, i
i eguivalent i elimingte the two rows,with —1 in (3.42), Breeause of some
special values (e, 2., 0, — 1) in the above equation, we could rewriie (3.35) und

(3.38),

b = (3.43)
g, "'-"Ku""*us‘:* L Ew
iy T L.ﬁ 'IJ'II: E
TR Lo i “‘-H:'Tﬂ‘wﬁ"ﬁ WY (3.44)
g ieXger
E‘_-:":ILS’_I':‘JI__I TeEYjeEX
Maote that (3.43) is derved becouse of the two zeros in the kelt column in ©3.42).
Self Merging Rule:

Let X be an m-port network with o self loop connected to sy, and ny,
in & {see Fig. 3130 The only difference of the sell-merging scepario from
sdynined-merging is that the eguation (3.38) can not be upplied in self-merging
mle, However, (3:41) sull holds when ¥ is repleced by Xg. 00,

5 | 58
H Ih'"u TL 'h‘r.\.';_.'l: ju] 5.\.': Xa *'* IE'-"I-FL.’I:'.-\. iy
!u' 1‘”‘-1 "'ll.. S-""u."ig -"'1-‘54 Xa - S.J-';.\'... Xy

'." Niw X "'II-‘:I Ay "'I"u-‘l i | 'J;‘m X

BN,
{1.45)

by,
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Thesefore, if we eliminate the Arst two rows from the shove syatem, then the
emiries ire gaven by

b = (3.46)
sty ((Sxepx — 1 S — Sy S )

Sy = Sy+ (3.47)
"-'!i."fl (T Xy — 1) '“;-"f:l.nI = S-Y!J qurx::-l
ﬂ 1

+ L=l m—12

(348)

whire
A = Sxox Fagxg — (5 x5 — 1) (Saao, = 1)), (3.49)

Giiven an arbitrary distributed-lumped neswork, let B, be the sel of extemal
nnodes, The metwork reduction process beging with merging all internal cotm-
penents by repeatedly utitizing the sdjoined menzing rule for all the podes T
that does not belong 1o B, ‘The sell merging rube o5 applied o eliminae all
thie self loaps introduced by the adjoined merging process. Finally, an n-port
network churscterized by s scattening parametess is derived. Note that the
S-paraneelers are approximuted by their lower ardir moments,

AN Gettlng Transfer Functions

Clnce wie hove obtined the pduced S-mstns, we can use (325 and (327
to covert g and b into port welinges and currents. Thus, we e use various
combinations of them o get uny rnster function of interest. Once (he tramsfer
Tusetion in obbined, the Pade gprosimation method introduced betore can be
sl o analdvae the sysiem

rYd Remiards

Separnmeter baged macro model of distibuted-lumped networks was first
mroduced by Liaof51), The Sparameter based macromiodel is fexible th
the wccuracy of the model can be controlled by ajusting the arder of Aappron
brition, However, it usen Paddé apprasimation 1o obisin mscromode s, Lutes

Maodel Order Raducifon 61

on, Lino proposed a reafizable seduction methad|S0] based on Sepurumeters,
Yet the method is only applicable to RC circuits only, and realizoble cirouit
is first order only, Another limitation of the proposed macromodel method is
that scattering parimeters are wsed only as an intermediate result, as the £ven
distributed-lumped networks and desired transfer functions {macromodels) ore
all in Laplace transform,  Therefore, it is apparently more preferable o use
Laplace transforms directly. Generalized Y-A trunsformation is just one such

method {Chapter 4),

4. Summary

In this chagter, we first laid the foundation for linear cirouit similation and re-
ductinn —basics of cireuit analysis in time domain and s-domain. We then pre-
sented twio state-of-the-urt research directions in linenr reduction area: explicit
moment-matehing method with Padé approximation and reatizable wpological
reduction methods, The twe directions have their advantages and limitagions.
Nowadays, these the methods are all implemented and widely used 1o solve
real indusiry designs. And their Hmitations. however, are the motivagions of {he
research in this thesis —generulized Y-24 transformation.







