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Vector Spaces & Sub-Spaces

ROW SPACE OF A MATRIX
Let A be an arbitrary m ¥ n matrix over a field K:

G Oy - ﬂ-h\\
A4 = (ﬂﬂ g2z ...
Bmi BmE .o e ﬂ-nn/
The rows of A,
Bi=an, G, ..oy @)y -. .y Fm = (Gwi, Gmey o 0 ., Gms)

viewed as vectors in K", span a subspace of K* called the row space of A. That is,
rowspace of A = L{Rq Ry, ..., Ra)

Analogously, the columns of A, viewed as vectors in K™, span a subspace of K= called the

column space of A,
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Vector Spaces & Sub-Spaces...

SUMS AND DIRECT SUMS
Let 7 and W be subspaces of a vector space V. The sum of U/ and W, written U + W,
congists of all sums u + w where v € U and w € W:

D+ W = (u+w: veEl, we W}

Note that 0 =0+ 0& U+ W, since 0T, 0 € W. Furthermore, suppoge i + w0 and
w + ' belong to U7 + W, with w,w’ € U and w,w’ € W. Then

{utw) + w+w) = (u+w) + (wrw) € U+ W
and, for any acalar k&, Blw+w) = ku+ kw € t_i’*li’
Thus we have proven the following theorem.

Theorem 4.8: The sum 7 + W of the subspaces [’ and W of ¥ is also a subspace of V.
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Definition: The vector space V is said to be the direct sum of its subspaces U and W,
denoted by V- Uew

if every vector » € V can be written in one and only one way as v =u+w
where ¥ €U and we W.

The following theorem applies.

Theorem 4.9: The vector space V is the direct sum of its subspaces U and W if and only
if: YV =U+W, and (ii) UnW = {0).
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Basis & Dimension

LINEAR DEPENDENCE

Definition: Let V be a vector space over a field K. The vectors 21,...,Um € V are-said
to be linearly dependent over K, or simply dependent, if there exist scalars
a, ...,am € K, not all of them 0, such that

@y + G2 + -+ Apm = 0 (*)
Otherwise, the vectors are said to be linearly independent over K, or simply
independent.
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Remark 6. In the real space R?, dependence of vectors can be described geometrically as
follows: any two vectors u and v are dependent if and only if they lie on the
same line through the origin; and any three vectors u, v and w are dependent
if and only if they lie on the same plane through the origin:

« and v are dependent. %, v and w are dependent.
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Basis & Dimension...

BASIS AND DIMENSION
We begin with a definition.

Definition: A vector space V is said to be of finite dimension n or to be n-dimensional,
written dim V = =a, if there exists linearly independent vectors ey, €z ...,¢én
which span V. The sequence {1, es, ..., &) is then called a basis of V.

The above definition of dimension is well defined in view of the following theorem.
Theorem 53: Let V be a finite dimensional vector space. Then every basis of V has the
same number of elements.

The vector space {0} is defined to have dimension 0. (In a certain sense this agrees with
the above definition since, by definition, @ is independent and generates {0}.) When a
vector space is not of finite dimension, it is said to be of infinite dimension.
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Theorem 5.5: Suppose S generates V and {vi, ..., ¥m} is a maximal independent subset
of 8. Then {vi, ..., v} is a basis of V.

The main relationship between the dimension of a vector space and its independent
subsets is contained in the next theorem.
Theorem 5.6: Let V be of finite dimension n. Then:

(i) Any set of n+1 or more vectors is linearly dependent.

(ii) Any linearly independent set is part of a basis, i.e. can be extended to
a basis.

(iii) A linearly independent set with n elements is a basis.
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Basis & Dimension...

DIMENSION AND SUBSPACES

The following theorems give basic relationships between the dimension of a vector space
and the dimension of a subspace.

Theorem 5.7: Let W be a subspace of an n-dimension vector space V. Then dim W =n.
In particular if dim W ==, then W=V.

Example 58: Let W be-a-subspace of the real space R%, Now dimR? = 3; hence by the preced-
ing theorem the dimension of W can only be 0, 1, 2 or 3. The following cases apply:

(i) dim W = 0, then W = {0}, a point;

(ii) dim W = 1, then W is a line through the origin;
(iii) dim W = 2, then W is a plane through the origin;
(iv) dim W = 3, then W is the entire space R3.

Theorem 5.8: Let U and W be finite-dimensional subspaces of a vector space V. Then
U + W has finite dimension and

dim(U+V) = dimU + dimW - dim (UnW)

Note that if V is the direct sum of U and W, ie. V = U@ W, then dimV =
dim U + dim W (Problem 5.48).

V. Sahula Vector Spaces
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RANK OF A MATRIX

Let A be an arbitrary m X n matrix over a field K. Recall that the row space of A is
the subspace of K generated by its rows, and the column space of A is the subspace of K™
generated by its columns. The dimensions of the row space and of the column space of A
are called, respectively, the 70w rank and the column rank of A.

Theorem 5.9: The row rank and the column rank of the matrix A are equal.

Definition: The rank of the matrix A, written rank (4), is the common value of its row
rank and column rank.

Thus the rank of a matrix gives the maximum number of independent rows, and also
the maximum number of independent columns. We can obtain the rank of a matrix as
follows.
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Basis & Dimension...

APPLICATIONS TO LINEAR EQUATIONS
Consider a system of m linear equations in n unknowns x, . . ., z, over a field K:

au¥r + @l + -0+ Qinla b
An®y + Q2o + + - + donn = b2

i+ AmaZz2 + - -+ + AmaZn = bm
or the equivalent matrix equation
AX = B

where A = (ay) is the coefficient matrix, and X = (z;) and B = (b)) are the column vectors
consisting of the unknowns and of the constants, respectively. Recall that the augmented
matriz of the system is defined to be the matrix

an @i Gn by
(2 7 by
(A4, B) =
Gmi @m2 Qmn  bm
V. Sahula Vector Spaces
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Remark 1. The above linear equations are said to be dependent or independent according

as the corresponding vectors, i.e. the rows of the augmented matrix, are
den: Ad t or ind, 4 4

D

Remark 2. Two systems of linear equations are equivalent if and only if the corresponding
augmented matrices are row equivalent, i.e. have the same row space.

Remark 3. We can always replace a system of equations by a system of independent
equations, such as a system in echelon form. The number of independent
equations will always be equal to the rank of the augmented matrix.

Observe that the above system is also equivalent to the vector equation

an (15¢] Gin bs

a; b2

Ty C"a'l + | 4 e 4 T L = ..
1 (L . b

Thus the system AX =B has a solution if and only if the column vector B is a linear
combination of the columns of the matrix A, i.e. belongs to the column space of A. This
gives us the following basic existence theorem.

Theorem 5.10: The system of linear equations AX = B has a solution if and only if the
coefficient matrix A and the augmented matrix (4, B) have the same rank.
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Basis & Dimension...

COORDINATES
Let {e1, ..., €,} be a basis of an n-dimensional vector space V over a field K, and let v
be any vector in V. Since {e:} generates V, v is a linear combination of the e:

v = @ert+ et auen, HEK

Since the e; are independent, such a representation is unigue (Problem 5.7), i.e. the n

., an are completely determined by the vector v and the basis {e:}. We call

e ., &) the coordinate

these scalars the coordinates of v in {e:}, and we cal} the n-tuple (ai, ..
vector of v relative to {e;} and denote it by [v]. or simply [v]:

[v]e = (a1, @2, - .., Gn)

V. Sahula Vector Spaces
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MAPPINGS

Let A and B be arbitrary sets, Suppose to each ¢ € A there is assigned a unique ele-
ment of B; the collection, f, of such assignments is called a function or mapping (or: map)
from 4 into B, and is written 3
f:A—>B or A>PR
We write f(a), read “f of a”, for the element of B that J assigns to ¢ € 4; it is called the
value of f at a or the image of a under f. If A’ is any subset of A, then f(A’) denotes the set
of images of elements of A’; and if B is any subset of B, then f~'(B’) denotes the set of
elements of A each of whose image lies in B’:

flA) = {fle): a €A’} and fYB) = {a€A: f(a) € BY

We call f(A’) the image of A’ and f~)(B’) the inverse image or preimage of B’. In particular,
the set of all images, i.e. f(A), is called the image (or: range) of f. Furthermore, A is called
the domain of the mapping f: A - B, and B is called its co-domain.

To each mapping f:A->B there corresponds the subset of A X B given by
{(za,f(a)): @ € A}. We call this set the graph of f. Two mappings f:A-B and g:A~B
are defined to be equal, written f =g, if f(a) = g(a) for every a € A, that is, if they have
the same graph. Thus we do not distinguish between a function and its graph. The nega-
tion of f=g is written f+g and is the statement: there exists an ¢ € A for which
fla) = g(a).
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Basis & Dimension...

Theorem 5.12: Let V be an n-dimengional vector space over a field K. Then V and K» are
isomorphic.

Remark: Every m X n matrix A over a field K determines the mapping T:K"— K™
defined by o b Av

where the vectors in K* and K™ are written as column vectors. For convenience
we shall usually denote the above mapping by A, the same symbol used for the
matrix.

V. Sahula Vector Spaces 15

Linear Mappings

Definition: A mapping f:A > B is said to be one-to-one (or one-one or 1-1) or injective
if different elements of A have distinct images; that is,

if e a’ implies f(a)+* f(a’)
or, equivalently, if f(a) = f(e’) implies a=4a’
Definition: A mapping f:A - B is said to be onto (or: f maps A onto B) or surjective if
every b € B is the image of at least one a € A,
A mapping which is both one-one and onto is said to be bijective.

V. Sahula Vector Spaces 16




Linear Mappings...

LINEAR MAPPINGS

Let V and U be vector spaces over the same field K. A mapping F:V - U is called a
linear mapping (or linear transformation or vector space homomorphism) if it satisfies the
following two conditions:

(1) For any v,w €V, F(v+w) = F(v) + F(w).
(2) Forany k€ K and any v €V, F(kv) = kF(v).

In other words, ¥':V = U is linear if it “preserves” the two basic operations of a vector
space, that of vector addition and that of scalar multiplication.

Substituting k= 0 into (2) we obtain F(0)=0. That is, every linear mapping takes
the zero vector into the zero vector.

V. Sahula Vector Spaces

Linear Mappings...

Now for any scalars a,b € K and any vectors v,w € V we obtain, by applying both

conditions of linearity,
Flav+bw) = Flav) + F(bw) = aF(v) + bF(w)
More generally, for any scalars o, € K and any vectors v €V we obtain the basic
property of linear mappings:
F(av:+ asva+ - -+ +aavn) = aF(vy) + aeF(ve) + -+ + anF'(vr)

We remark that the condition F(av+bw) = aF(v) + bF(w) completely characterizes

linear mappings and is sometimes used as its definition.

Definition: A linear mapping F:V — U is called an isomorphism if it is one-to-one. The
vector spaces V, U are said to be isomorphic if there is an isomorphism of
V onto U.
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Linear Mappings...

Theorem 6.2: Let V' and U be vector spaces over a field K. Let {v1,%s, ..., %} be a basis
of V and let w1, u, .. .,u: be any vectors in U. Then there exists a unique
linear mapping F:V > U such that F(v1) = uy, F(vs) =, ..., F(vs) = tn.

We emphasize that the vectors uy, ..., . in the preceding theorem are completely ar-
bitrary; they may be linearly dependent or they may even be equal to each other.

KERNEL AND IMAGE OF A LINEAR MAPPING
‘We begin by defining two concepts.

Definition: Let F:V - U be a linear mapping. The image of F, written Im F, is the set
of image points in U:

ImF = {ueU: F(v) =u for some v € V}
The kernel of F, written Ker F, is the set of elements in V which map into
oer KerF = (vEV: F(v) =0}
The following theorem is easily proven (Problem 6.22).

Theorem 63: Let F:V-U be a linear mapping. Then the image of F' is a subspace
of U and the kernel of F is a subspace of V.

V. Sahula Vector Spaces
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OPERATIONS WITH LINEAR MAPPINGS

We are able to combine linear mappings in various ways to obtain new linear mappings.
These operations are very important and shall be used throughout the text.

i i field K.
Suppose F:V~ U and G:V U are linear mappings of ve(ftor spi_mes over a
We define the sum F + G to be the mapping from V into U which assigns F(v) +G) to
vev (F+6G)(v) = F(v) + Glo)

Furthermore, for any scalar k € K, we define the product kF to be the mapping from V
into U which assigns kF(v) to v € V:
(kF)(v) = kF(v)
We show that if F and G are linear, then F'+ G and kF are also linear. We have, for any
vectors v,w € V and any scalars a,b €K,
(F+G)av+bw) = Flav+bw) + Glav + bw)

= aFWw) + bF(w) + aG(v) + bG(w)

= oF(®) +G(®) + bF(w)+G(w))

= aF+G)v) + b(F +G)w)
and (kF)av +bw) = kF(av+bw) = k(aF (v) + bF(w))

akF(v) + bEF(w) = a(kF)(v) + bkFHw)

Thus F + G and kF are linear.

The following theorem applies.

V. Sahula Vector Spaces

20

10/10/2012

10



Linear Mappings...

Theorem 6.6: Let V and U be vector spaces over a field K. Then the collection of all
linear mappings from V into U with the above operations of addition and
sealar multiplication form a vector space over K.
The space in the above theorem is usually denoted by
Hom (V, U)
Here Hom comes from the word homomorphism. In the case that ¥V and U are of finite
dimension, we have the following theorem.

Theorem 6.7: Suppose dimV =m and dimU =n. Then dim Hom(V, U) = mn.

Now suppose that V, U and W are vector spaces over the same field K, and that F:V > U
and G:U - W are linear mappings:
F G

Recall that the composition function GeoF is the mapping from V into W defined by
(GoF)(v) = G(F(v)). We show that GoF is linear whenever F and G are linear. We have,
for any vectors v,w € V and any scalars a,b € K,
(GoFav+bw) = GFr+dw) = GlaF()+ bF(w))
aGF(v)) + bG(Fw)) = aGoF)(v) + bGoF)w)
That is, G o F is linear.

V. Sahula Vector Spaces 21
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Theorem 6.8: %;et I;; [é and W be vgctor spaces over K. Let F, F” be linear mappings from
in and G, G’ linear mappings from U/ into W, and let k€ K. Then:
() Go(F+F) = GoF + Gok*
(if) (G+G)oF = GoF + G'oF

(ifi) (G oF) = (kG)oF = Go(kF).

V. Sahula Vector Spaces 22
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Linear Mappings...

ALGEBRA OF LINEAR OPERATORS

Let V be a vector space over a field K. We now consider the special case of linear map-
pings T:V -V, ie. from V into itself. They are also called linear operators or linear
transformations on V. We will write A(V), instead of Hom (V, ¥), for the space of all such
mappings.

By Theorem 6.6, A(V) is a vector space over K it is of dimension %2 if V is of dimension
n. Now if T,85€ A(V), then the composition So7 exists and is also a linear mapping
from V into itself, ie. SoT € A(V). Thus we have a “multiplication” defined in A(¥).
(We shall write ST for So T in the space A(V).)

We remark that an algebra A over a field K is a vector space over K in which an opera-
tion of multiplication is defined satisfying, for every F,G,H € A and every k€K,

() F(G+H) = FG + FH
(i) (G+HF = GF + HF
(ii) K(GF) = (kG)F = G(kF).

V. Sahula Vector Spaces
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If the associative law also holds for the multiplication, i.e. if for every F,G,H€ A,
(iv) (FG)H = F(GH)
then the algebra A is said to be associative. Thus by Theorems 6.8 and 6.1, A(V) is an

associative algebra over K with respect to composition of mappings; hence it is frequently
called the algebra of linear operators on V.

Observe that the identity mapping I:V >V belongs to A(V). Also, for any T € A(V),
we have TI =IT =T, We note that we can also form “powers” of T; we use the notation
T?=ToT,T*=TeTeT, ..,. Furthermore, for any polynomial

p(x) = @+ a1z + @z + - + aaan, e €K
we can form the operator p(T) defined by
2(T) = ad + auT +a:T? + - -« + @, T

(For a scalar k € K, the operator kI is frequently denoted by simply k.) In particular, if
p(T) =0, the zero mapping, then T is said to be a zero of the polynomial ().

V. Sahula Vector Spaces
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Linear Mappings...

INVERTIBLE OPERATORS
A linear operator T:V - V is said to be invertible if it has an inverse, ie. if there
exists 7' € A(V) suchthat TT'=T"'T =1L

Now T is invertible if and only if it is one-one and onto. Thus in particular, if T is
invertible then only 0 € V can map into itself, i.e. T is nonsingular. On the other hand,
suppose T is nonsingular, i.e. Ker T = {0}. Recall (page 127) that T is also one-one. More-
over, assuming ¥V has finite dimension, we have, by Theorem 6.4,

dimV = dim(ImT) + dim(KerT) = dim(Im7) + dim({0})
dim(Im7) + 0 = dim(Im7T)
Then ImT =V, ie. the image of T is V; thus T is onto. Hence T is both one-one and onto
and so is invertible. We have just proven

Theorem 6.9: A linear operator T:V =7V on a vector space of finite dimension is in-
vertible if and only if it is nonsingular.

V. Sahula Vector Spaces

25

Linear Mappings...

We now give an important application of the above theorem to systems of linear
equations over K. Consider a system with the same number of equations as unknowns,
say n. We can represent this system by the matrix equation

Axr = b (*)
where A is an n-square matrix over K which we view as a linear operator on K. Suppose
the matrix A is nonsingular, ie. the matrix equation Az =0 has only the zero solution.
Then, by Theorem 6.9, the linear mapping A is one-to-one and onto. This means that the
system (+) has a unique solution for any b € K». On the other hand, suppose the matrix
A is singular, i.e. the matrix equation Az =0 has a nonzero solution. Then the linear
mapping A4 is not onto. This means that there exist b € K for which (*) does not have a
solution. Furthermore, if a solution exists it is not unique. Thus we have proven the
following fundamental result:

Theorem 6.10: Consider the following system of linear equations:
Qs + Gieka + + - + Quadn = b1
U1 + Az + + -+ + Gankn = D2

Qi1 + @naZz + * ¢+ Genln = by

V. Sahula Vector Spaces
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Linear Mappings...

(i) If the corresponding homogeneous system has only the zero solution,
then the above system has a unique solution for any values of the b

(if) If the corresponding homogeneous system has a nonzero golution, then:
(i) there are values for the b; for which the above system does not have
a solution; (ii) whenever a solution of the above system exists, it is
not unique.
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Matrices and Linear Operators

INTRODUCTION
Suppose {ey, ..., en} is a basis of a vector space V over a field K and, for v € V, suppose
? = @161+ @262 + - - - + @aea. Then the coordinate vector of v relative to {e:}, which we write
ag a column vector unless otherwise specified or implied, is
[N

Recall that the mapping v b [v), determined by the basis {e:}, is an jsomorphism from V
onto the space K",

In this chapter we show that there is also an isomorphism, determined by the basis
{e:}, from the algebra A(V) of linear operators on V¥ onto the algebra o4 of n-square matrices
over K.

A similar result also holds for linear mappings F:V ~ U, from one space into another.
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Matrices & Linear Operators...

MATRIX REPRESENTATION OF A LINEAR OPERATOR

Let 7T be a linear operator on a vector space V over a field K and suppose {ei, ..., e} is
a basis of V. Now T(ey), . .., T(ex) are vectors in V and so each is a linear combination of
the elements of the basis {e:}:

T(er) = auer + auzez+ -+ + Ginn
T(e:) = @o1e1 + Gzzez + - -+ + Qona

T(en) = Gmer + anzez + -+ + Gunn
The following definition applies.

Definition: The transpose of the above matrix of coefficients, denoted by [T]s or [T], is
called the matriz representation of T relative to the basis {e} or simply the
matrixz of T in the basis {e:}:

dn Qa1 ... On1
a Q. ()
(T]. = 12 Qo2 w.‘
Ain  Ozn Qnn
V. Sahula Vector Spaces 29
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Remark: Recall that any n-square matrix A over K defines a linear operator on K* by
the map v > Av (where v is written as a column vector). We show (Problem
7.7) that the matrix representation of this operator is precisely the matrix A
if we use the usual basis of K=,

Our first theorem tells us that the “action” of an operator T on a vector v is preserved
by its matrix representation:

Theorem 7.1: Let {ey, ..., e} be a basis of V and let T be any operator on V. Then, for
any vector v € V, [T).[v]. = [T(¥)]..

That is, if we multiply the coordinate vector of v by the matrix representation of T,
then we obtain the coordinate vector of T'(v).

V. Sahula Vector Spaces 30
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Matrices & Linear Operators...

Now we have associated a matrix [T']. to each T in A(V), the algebra of linear ope
on V. By our first theorem the action of an individual operator T is preserved b
representation. The next two theorems tell us that the three basic operations with
operators
(i) addition, (ii) scalar multiplication, (iii) composition
are also preserved.

Theorem 7.2: Let {e1,...,e.} be a basis of ¥V over K, and let o4 be the algel
n-square matrices over K. Then the mapping T+ [T]. is a vector
isomorphism from A(V) onto e4. That is, the mapping is one-one an
and, forany S,T € A(V) and any k€K,

[T+8). = [T)e+[S]e and [kT]. = K[T].
Theorem 7.3: For any operators S,T € A(V), [8T). = [S]¢[T]..

We illustrate the above theorems in the case dimV =2. Suppose {e1, €2} is a bz
V, and T and S are operators on V for which

T(e1) = azes + azez S(el) = cier + coe2
T(es) = bies + baes ’ S(ez) = dier + dzez
_ja by _fa A
Then [T)e = (uz bz) and [S]. = (c, dz)
V. Sahula Vector Spaces
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Now we have (T +8)(er) = T(er) + S(e1) = @rer + as€z + 101 + Cz€2
(a1 +ed)er + (az+ cz)ex

biey + baex + diey + dzep
(b1 +di)er + (ba+ do)ez

a+e bi+ds _ [ b ¢ di _
[T+S]g - (ﬂ2+ﬂg ba +d2) - (a; bz) + (01 dz) - [T]s + [S]E
Also, for k € K, we have

(kT)e)) = kT(er)) = k(aier+azes) = kaze, + kases
(kT)(es) = ET(e)) = k(brer +bae)) = kbies + kbsen

Hence kT = (’;:; II:::) = k(z; Z:) = K[T].
Finally, we have
(ST)(e) = S(T(er)) = S(ares+azes) = aiS(er) + a385(es)
= ai(ere1 + e2e5) + az(dier + dses)
= (@161 + aadr)er + (G1ce + aads)es
(ST)(e2) = S(T(e)) = S(brer+bzes) = buS(er) + baS(es)
= bi(cier + Caea) + ba(dser + daen)
= (bse1+ bada)er + (brca+ bads)er

(T + S)(ez) = T(ea) + S(e2)

Thus

Accordingly,

1+ aads bici + b ¢y di\ fax b
V Sahula [ST)e = (a,,c Gal1 Dié ’dl) =\/e{ 1 (1 1

= Te
10z + Qo bica + bads 85 5785\ az bz) [S]e (7]

32
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Matrices & Linear Operators...

Theorem 7.4: Let P be the transition matrix from a basis {e;} to a basis {fi} in a vector
space V. Then, for any vector » €V, P[v]; = [v].. Hence [v]; = P-1{v].

We emphasize that even though P is called the transition matrix from the old basis
{e:} to the new basis {fi}, its effect is to transform the coordinates of a vector in the new
basis {f:} back to the coordinates in the old basis {e:}.

V. Sahula Vector Spaces 33
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We illustrate the above theorem in the case dimV =3. Suppose P is the transition
matrix from a basis {e, ez, es} of V to a basis {fi, o, f3} of V; say,

fi = wes + azes + ases a b G
f2 = bies + baes + bies . Hence P = (a2 b ¢
fs = cie1+ co2 + caes as ba cs

Now suppose v €V and, say, v = kifi+ ksfe+ kafs. Then, substituting for the fi from
above, we obtain

v = k(@161 + azes + aaes) + ka(brer + baes + boeg) + ks(crer + ¢z6a + cses)
= (@b + biks + ciks)er + (@zks + balka + eskis)es + (aakes + baka + csks)es

Thus k1 aiky + bike + eiks
[1;]). = k2 and [1)], = @als + baks + coles
s ashy + baks + csks
Accordingly, a by e\ [k @aks + biks + ciks
Plvly = |a by e |l k2 = azkr + beke + coks = [v]e
as bs es)\ks sy + baks + caks

Also, multiplying the above equation by P~?, we have
P[v], = PTIP[) = Ifv]y = [v]s
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Theorem 7.5: Let P be the transition matrix from a basis {e:} to a bagis {fi} in a vector
space V. Then for any linear operator T on V, [T]; = P~'[T].P.

Example 7.7:  Let T be the linear operator on R2 defined by T(x,y) = (42 —2y, 22 +y). Then for
the bases of R? in Example 7.5, we have
T(e) = T(1,0) = (4,2) = 41,0} +2(0,1) = 4ey + 2e;
Tle) = TO,1) = (—2,1) = —2(1,0) + (0,1) = —2¢, + e,

4 -2
Accordingly, T, = (2 1)
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CHANGE OF BASIS

‘We have shown that we can represent vectors by n-tuples (column vectors) and linear
operators by matrices once we have selected a basis. We ask the following natural question:
How does our representation change if we select another basis? In order to answer this
question, we first need a definition.

Definition: Let {e, ..., .} be a basis of V and let {fi, ..., f»} be another basis. Suppose

fi = auer+ages+ - + apmen

fo = @zi€1 + Qe+ -+ + donén

fo = @nies + Gnoe2 + - + Qanen

Then the transpose P of the above matrix of coefficients is termed the transi-
tion matriz from the “old” basis {e:} to the “new” basis {fi}:

an Qny.

a2 An2
P =

Qin Qan

We comment that since the vectors fi, ..., f. are linearly independent, the matrix P is
invertible (Problem 5.47). In fact, its inverse P! is the transition matrix from the basis
(f:} back to the basis {e;}.
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SIMILARITY

Suppose A and B are square matrices for which there exists an invertible matrix P
such that B = P~'AP. Then B is said to be similar to A or is said to be obtained from A
by a similarity transformation. We show (Problem 7.22) that similarity of matrices is an
equivalence relation. Thus by Theorem 7.5 and the above remark, we have the following
bagic result.

Theorem 7.6: Two matrices A and B represent the same linear operator T if and only if
they are similar to each other.

That is, all the matrix representations of the linear operator T form an equivalence
class of similar matrices.

A linear operator T is said to be diagonalizeble if for some basis {e;} it is represented
by a diagonal matrix; the basis {e:} is then said to dizgonalize T. The preceding theorem
gives us the following result.

Theorem 7.7: Let A be a matrix representation of a linear operator T. Then T is
diagonalizable if and only if there exists an invertible matrix P such that
P~1AP is a diagonal matrix.

That is, T is diagonalizable if and only if its matrix representation can be diagonalized

by a similarity transformation.
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We emphasize that not every operator is diagonalizable. However, we will show
(Chapter 10) that every operator T can be represented by certain “standard” matrices
called its normal or canonicel forms. We comment now that that discussion will require
some theory of fields, polynomials and determinants.

Now suppose f is a function on square matrices which agsigns the same value to similar
matrices; that is, f(A) =f(B) whenever A is similar to B. Then f induces a function, also
denoted by f, on linear operators 7' in the following natural way: f(T) = f([T].), where {e:}
is any basis. The function is well-defined by the preceding theorem.

The determinant is perhaps the most important example of the above type of functions.
Another important example follows.

Example 7.8: The trace of a square matrix A = (au), written tr (4), is defined to be the sum of

its diagonal elements:
tr(d) = ay +Ggs + -0+ Gy

‘We show (Problem 7.22) that similar matrices have the same trace. Thus we can
speak of the trace of a linear operator T; it is the trace of any one of its matrix
representations: tr(T) = tr([T],).
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MATRICES AND LINEAR MAPPINGS
We now consider the general case of linear mappings from one space into another.
Let V and U be vector spaces over the same field K and, say, dimV =m and dimU =n.
Furthermore, let {e1,...,en} and {fi,...,f:} be arbitrary but fixed bases of V and U
respectively.
Suppese F:¥ > U is a linear mapping. Then the vectors F(ei), ..., F(en} belong to
U and so each is a linear combination of the fi
F(e,) = anfi + @uzfz + -+ Qinfn
Fl(es) @zf1 + Qaafe + <+ + C2afn

Flem) = @mifi + mafz + - + Qunfn

The transpose of the above matrix of coefficients, denoted by [F]/ is called the matriz
representation of F relative to the bases {e;} and {f:}, or the matrix of F in the bases {ei}
and {fi}:

@i 42t ... Gm

¢ T— @iz Qa2 Q2
Fi =

in  Oon Amn

The following theorems apply.

Theorem 7.8: For any vector » €V, [F)!{[v]. = [F(#)]s.

That is, multiplying the coordinate vector of » in the basis {e:} by the matrix [F)1, we
obtain the coordinate vector of F(v) in the basis {fi}.
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Theorem 7.9: The mapping F + [F]! is an isomorphism from Hom (V, U) onto the vector
space of n X m matrices over K. That is, the mapping is one-one and onto
and, for any F,G € Hom(V,U) and any k€K,
F+G) = [FlI+[G)  and  [kFI! = K[F]]

Remark:  Recall that any n X m matrix A over K has been identified with the linear map-
ping from K~ into K* given by v Av. Now suppose V and U are vector
spaces over K of dimensions m and n respectively, and suppose {e:} is a basis
of V and {f;} is a basis of U. Then in view of the preceding theorem, we shall
also identify A with the linear mapping F:V = U given by [F(v)]s=A[v]e. We
comment that if other bases of V and U are given, then A is identified with
another linear mapping from V into U.

Theorem 7.10: Let {e:}, {f:;} and {g:} be bases of ¥, U and W respectively. Let F:V->U

and G:U- W be linear mappings. Then
[GoFY = [GF [P
That is, relative to the appropriate bases, the matrix representation of the composition
of two linear mappings is equal to the product of the matrix representations of the
individual mappings.
We lastly show how the matrix representation of a linear mapping F:V = U is affected
when new bases are selected.
Theorem 7.11: Let P be the transition matrix from a basis {e;} to a basis {el} in V, and let
Q be the transition matrix from a basis {f:} to a basis {f{} in U. Then for
any linear mapping F:V > U,
[Fli. = Q[F|[P
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Thus in particular,
[Fly = @*[F]}

i.e. when the change of basis only takes place in U; and
[FlL = [F)iP
i.e. when the change of basis only takes place in V.
Note that Theorems 7.1, 7.2, 7.3 and 7.5 are special cases of Theorems 7.8, 7.9, 7.10
and 7.11 respectively,
The next theorem shows that every linear mapping from one space into another can be
represented by a very simple matrix.

Theorem 7.12: Let F:V - U be linear and, say, rank F = r. Then there exist bases of
V and of U such that the matrix representation of ¥ has the form

N

where I is the r-square identity matrix. We call A the normal or canonical

form of F.
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WARNING
As noted previously, some texts write the operator symbol T to the right of the vector
v on which it acts, that is,
vT instead of T(v)
In such texts, vectors and operators are represented by n-tuples and matrices which are the
transposes of those appearing here. That is, if
v = kier 4+ kser + o0+ Knen
then they write ks
[0]e = (ki Koy ... k) instead of  [o]e = | *2
Fon
And if T(es) = aer+ @262+ - -+ + lnn
T(es) = brer+ baea+ - + brén
T(en) = Cre1+ €262+ - + Catn
then they write
o a @y e b1 ¢
. = by bz ... bn instead of 1. = a: b [
[ Cn an bn e
This is also true for the transition matrix from one basis to another and for matrix rep-
resentations of linear mappings F:V > U. We comment that such texts have theorems
which are analogous to the ones appearing here.
42
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INNER PRODUCT SPACES
We begin with a definition.

Definition: Let V be a (real or complex) vector space over K. Suppose to each pair of
vectors u,v € V there is assigned a scalar (u,v) € K. This mapping is called
an inner product in V if it satisfies the following axioms:

] (aus + bug, vy = afu, ¥) + bz, v)

[H2] (w,v) = (v,u)

[Is] (w,w)=0; and (w,u) =0 if and only if u=0.

The vector space V with an inner product is called an inner product space.

Observe that (u,u) is always real by [ls], and so the inequality relation in [I3] makes
sense, We also use the notation
el = viww

This nonnegative real number ||u]| is called the norm or length of u. Also, using [[,] and
[I2] we obtain (Problem 13.1) the relation

(u, avy + bvs) = du, v1) + blu, )
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Remark 1: If |jv]| =1, ie.if (»,v)=1, then v is called a unil vector or is said to be
normalized. We note that every nonzero vector u € V' can be normalized by
setting v = u/|ju/.
Remark 2: The nonnegative real number d(u,v) = |v—ul|| is called the disfance between
w and v; this function does satisfy the axioms of a metric space (see Problem
18.51).
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CAUCHY-SCHWARZ INEQUALITY
The following formula, called the Cauchy-Schwarz inequality, is used in many branches
of mathematies.
Theorem 13.1: (Cauchy-Schwarz): For any vectors w,v € V,
[tw, 3] = {lu]| o]

Next we examine this inequality in specific cases.
E: ple 13.6: Consider any plex numbers ay,...,a,by, ..., 0, € C. Then by the Cauchy-
Sehwarz inequality,
(aby+ o aB)? = (a2 e g B(|By[2 4 -+ [By[2)

that is, (wev)E = [|ul2 |o][2

where w = (o) and v = (b).
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ORTHOGONALITY

Let V be an inner product space. The vectors u,v € V are said to be orthogonal if
(u, v) = 0. The relation is clearly symmetric; that is, if » is orthogonal to v, then (v, uy =
{(#,2)=0=0 and so v is orthogonal to . We note that 0 € V is orthogonal to every
vEYV for 0,2} = {Ov,v) = Ov,v) = 0
Conversely, if u is orthogonal to every v € V, then (#,u) =0 and hence % =0 by [l3].

46
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Theorem 13.2: Let W be a subspace of V. Then V is the direct sum of W and W5, i.e.
V=wWaoW-.
Now if W is a subspace of V, then V=W & W~ by the above theorem; hence there is
a unique projection Ew: V=¥ with image W and kernel
Wt. Thatis, if v€V and »=w-+w’, where we W,
w’ € W', then Ew is defined by Ew(v)=w. This mapping
Eyw is called the orthogonal projection of V onto W.
Example 138: Let W be the z axis in R3, ie.
W = {{0,0,0): cER}
Then W' is the xy plane, ie.
Wt = {(a,b,0: abER)

As noted previously, R? = W @& W' The

orthogonal projection £ of R? onto W is given
by E{x,y,z) = (0,0,2). z

z

W
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ORTHONORMAL SETS

A set {w) of vectors in V is said to be orthogonal if its distinct elements are orthogonal,
i if (w,up) =0 for i+ 7. In particular, the set {u} is said to be orthonormal if it is
orthogonal and if each w; has length 1, that is, if

r

0 for i=j
@) = 8y = {

1 fori=j

An orthonormal set can always be obtained from an orthogonal set of nonzero vectors by
normalizing each vector.

Example 13.10: Consider the usual basis of Euclidean 3-space R
{e; = (1,0,0), &2 = (0,1,0), 5 = (0,0,1)}
It is clear that
(ey,8)) = g, 60) = (e, 62) =1 and (eye) =0 for ivj
That is, {#;, €, 8} i8 an orthonormal basis of R%. More generally, the usual basis
of R* or of C" is orthonormal for every n.
Example 13.11: Let V be the vector space of real continuous funetions on the interval 7=t ==
o
with inner product defined by (,g) = J. fl#) g(tydt. The following ia a classi-
eal example of an orthogonal subset of V:
{1, cos t, cos 2¢, ..., sin t, sin 2, ...}
The above orthogonal set plays a fundamental role in the theory of Fourier series.
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GRAM-SCHMIDT ORTHOGONALIZATION PROCESS

Orthonormal bases play an important role in inner product spaces. The next theorem
shows that such a basis always exists; its proof uses the celebrated Gram-Schmidt orthog-
onalization process.

Theorem 13.4: Let {vy, ..., v} be an arbitrary basis of an inner product space V. Then
there exists an orthonormal basis {u, . .., u.} of V such that the transition
matrix from {v;} to {w} is triangular; that is, for i=1,...,n,

W = Q¥ + Gtz + <« + Qut
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Proof. We set 1 = vy/||vi|l; then {u} is orthonormal. We next set
We = va— (Vp,u); and e = waf||ws|

By Lemma 18.8, w: (and hence uz) is orthogonal to w:; then {u, 4} is orthonormal. We next
set Wa = Uz — (Us, Ua)lhr — (Us, Utz and  us = wa/ ||ws|

Again, by Lemma 13.3, ws (and hence us) is orthogonal to #: and ws; then {ui, %2, us} is ortho-
normal. In general, after obtaining {w, ..., %)} we set

Wis1 = Visr— Virg, W) — - -+ — Wi+, W and Uiy = ‘Wl+1/||will|1

(Note that w;s,+ 0 because v;:1 & L{vy,...,v)=L(u, ..., m).) As above, {u,...,%+1}
is alzo orthonormal. By induction we obtain an orthonormal set {ui,...,%s} which is in-
dependent and hence a basis of V. The specific construction guarantees that the transition
matrix is indeed triangular.
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Example 13.12: Consider the following basis of Euclidean space R%:
{v; = (L1,1), vp=1{0,1,1), v3 = (0,0,1)}

‘We use the Gram-Schmidt orthogonalization process to transform {v;} into an ortho-
normal basis {v;}. First we normalize v, i.e. we set

v = - &Ln 111
T Tl V8 ( )

Next we set

2 1 1 1 211
ws = vy — (Vg Uity = (0.1,1}—@(@,‘73,—3) = (‘3’.5,5)

and then we normalize w,, i.e. we set

v = 2o (o2 11
TS Tl 5 V6 Ve
Finally we set
wy = vy — (Vg Ugdiy — (g, Uglil
_ 1/1 1 1 \ 1 2 1 1 ( 1 1)
= 00)——%F=F=F=l-F=—F==—==| = \b-5.7
vs(vfsuwa; \/‘6( V6" Ve \fa) gl
and then we normalize wy:
wy 101
= = [0, -—,
7 el ( VB ﬁ)

The required orthonormal basis of R? is

{ﬂl_(L.l_L wg=(—2, L 1\ oy L 1
- r ' k] - = Rar—1 hae - E =
V3 V'V Ve Ve Ve V2 'z
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ORTHOGONAL AND UNITARY OPERATORS
Let U be a linear operator on a finite dimensional inner product space V. As defined
above, if . . §
U*=U""' orequivalently UU*=U*U=1
then U is said to be orthogonal or unifary according as the underlying field is real or com-
plex. The next theorem gives alternate characterizations of these operators.
Theorem 13.9: The following conditions on an operator U are equivalent:
(i) U*=U", thatis, UU*=0U*U=1L
(ii) U preserves inner products, i.e. for every v,w €V,
(U), Ulw)y = (v,w)
(iii) U preserves lengths, i.e. for every v € V, |[U(v)]| = [|v]|.
Example 13.14: Let 7:R?—= R? be the linear operator which z Tiv)
rotates each vector about the z axis by a fixed
angle 8:
T(x,y,2) = (rcoss —ysina,
zsing + ycos e, 2)
Observe that lengths (distances from the ori-
rin) are preserved under T. Thus T is an .
orthogonal operator, x
Example 1315: Let V be the L-space of Example 135, Let 7:V ~V be the linear operator de-
! fined by Tiay,0s,...) = (0, @y, @y, ...). Clearly, T preserves inner produets and
lengths, However, T is not surjective since, for example, (1,0,0, ...} does not belong
to the image of T; hence T is not invertible. Thus we see that Theorem 13.9 is not
valid for spaces of infinite dimension,
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CHANGE OF ORTHONORMAL BASIS

In view of the special role of orthonormal bases in the theory of inner product spaces,

we are naturally interested in the properties of the transition matrix from on i
such ba
to another. The following theorem applies. © sns

Theorem 13.12: Let {ey,...,es} be an orthonormal basis of an inner product space V.
Then the transition matrix from (e} into another orthonormal basis is
unitary (orthogomal). Conversely, if P = (ay) is a unitary (orthogonal)
matrix, then the following is an orthonormal basis:

{ei = ane; + @+ - +amen: i=1,...,m)
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DIAGONALIZATION AND CANONICAL FORMS IN EUCLIDEAN SPACES

Let T be a linear operator on a finite dimensional inner product space V over K. Rep-
resenting T by a diagonal matrix depends upon the eigenvectors and eigenvalues of T,
and hence upon the roots of the characteristic polynomial a(f) of T (Theorem 9.6). Now
A(t) always factors into linear polynomials over the complex field C, but may not have any
linear polynomials over the real field R. Thus the situation for Fuclidean spaces (where
K =R) is inherently different than that for unitary spaces (where K = C); hence we treat
them separately. We investigate Euclidean spaces below, and unitary spaces in the next
section.

Theorem 13.14: Let T be a symmetric (self-adjoint) operator on a real finite dimensional
inner product space V. Then there exists an orthonormal basis of V

consisting of eigenvectors of T; that is, T ean be represented by a
diagonal matrix relative to an orthonormal basis.

We give the corresponding statement for matrices.
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Let A be a real symmetric matrix. Then there exists
an orthogonal matrix P such that B =P 'AP = PtAP
is diagonal.

Alternate Form of Theorem 13.14:

We can choose the columns of the above matrix P to be no'rmali'zed orthogonal eigen-
vectors of A: then the diagonal entries of B are the corresponding eigenvalues.
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2 -2
Example 13.18: Let 4 = (_2 5) . We find an orthogonal matrix P such that PtAFP is diagonal.
The characteristic polynomial A(t) of A is
t—2 2
Alt = tr—4 = = t—6)(t—
0 = -4 = | 5_5‘ (t-6)e—1)

The eigenvalues of A are 6 and 1. Substitute ¢ =6 into the matrix ¢/ — 4 to
obtain the corresponding homogeneous system of linear equations

dz+2y = 0, 2x+y =0

A mnongero solution iz v, = (1, —2). Next substitute t =1 into the matrix ¢/ — A
to find the corresponding homogeneous system

—x+ 2y =0, 2x—4y = 0

A nonzero solution is (2,1). As expected by Problem 13.31, »; and v, are orthogonal,
Normalize v; and v; to obtain the orthonormal basis

{u, = (15, =25), uy = @NE, IV )

Finally let P be the matrix whose columns are u; and u, respectively, Then

1/45 2
F = f‘/_ h/g and P-1AP = PIAP = (6 0)
—2i/5 1B L

As expected, the diagonal entries of PIAF are the eigenvalues corresponding to the
eolumns of P.
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Theorem 13.15: Let T be an orthogonal operator on a real inner product space ¥V, Then
there is an orthonormal basis with respect to which T has the following
form:
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DIAGONALIZATION AND CANONICAL FORMS IN UNITARY SPACES

We now present the fundamental diagonalization theorem for complex inner product
spaces, i.e. for unitary spaces. Recall that an operator T is said to be normal if it com-
mutes with its adjoint, ie. if TT* = T*T. Analogously, a complex matrix 4 is said to be
normal if it commutes with its conjugate transpose, i.e. if AA* = A*4,

1 1
Example 1320: Let A = (i . 2i). Then

1 1 1 i _ 2 3-8
aar (i 3+2€>(1 3—2@> - (34-31' 14 )

1 =i \/1 1 2 3-3i
va = [ _
ara \1 3—25)(;' 3|2i) (3+31‘ 14 )

Thus 4 is a normal matrix.

The following theorem applies.
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Theorem 13.16: Let T be a normal operator on a complex finite dimensional inner product
space V. Then there exists an orthonormal basis of V consisting of
eigenvectors of T; that is, T can be represented by a diagonal matrix
relative to an orthonormal basis.

We give the corresponding statement for matrices.

Alternate Form of Theorem 13.16: Let A be a normal matrix. Then there exists a uni-
tary matrix P such that B= P 'AP = P*AP is diagonal.

The next theorem shows that even non-normal operators on unitary spaces have a
relatively simple form.
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Theorem 13.17: Let T be an arbitrary operator on a complex finite dimensional inner
product space V. Then 7 ean be represented by a triangular matrix
relative to an orthonormal basis of V.

Allernate Form of Theorem 13.17: TLet 4 be an arbitrary complex matrix. Then there
exists a unitary matrix P such that B = P~'AP = P*AP is triangular.
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SPECTRAL THEOREM
The Spectral Theorem is a reformulation of the diagonalization Theorems 13.14 and 13.16.

Theorem 13.18 (Speciral Theorem): Let T be a normal (symmetric) operator on a com-
plex (real) finite dimensional inner product space V. Then there exist
orthogonal projections ¥, ...,E, on V and scalars Ay, ...,\ such that

i) T=ME+ N NE+ - +\E,
(ii) Bi+Bat - + B, =1
(iiiy BBy =0 for 1=+ 7.
The next example shows the relationship between a diagonal matrix representation and
the corresponding orthogonal projectiona.

2
Example 13.21: Consider a diagonal matrix, say A = 8 s Let
5
/1 A\ i \ 0
0 _ 1 0
E, = | o ] o 1 , By = 0
\ o/ 0 1

The reader can verify that the F; are projections, i.e. E: = E;, and that

V. Sahula iy A = 2E, + 3E; + E%C{Orgﬁbcegl +E;+ E; = I, (iif) EE; =0 for i j
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