Vector Spaces

Vineet Sahula, sahula@ieee.org
Malaviya National Institute of Technology, Jaipur

I Odd Semester 2012

Groups

1. A non-empty set \mathcal{G} on which a binary operation ois defined,
2. provided, for $a, b, c \in \mathcal{G}$, the following properties hold-
2.1 $P_{1}:(a \circ b) \circ c=a \circ(b \circ c) \quad$ Associative law
2.2 P_{2} : There exists $u \in \mathcal{G}$ such that $u \circ a=a \circ u=a$ Existence of Identity element
2.3 P_{3} : For each $a \in \mathcal{G}$, there exists $a^{-1} \in \mathcal{G}$ such that $a \circ a^{-1}=a^{-1} \circ a=u$

Groups...

1. A group is Abelian, if the group operation is commutative; else it is non-abelian
2. Examples
2.1 Set I of integers, wrt addition
2.2 Check set $A=\{-3,-2,-1,0,1,2,3\}$ wrt addition ?
2.3 set of cuberoots of ' 1 ' $\Rightarrow A=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}=\left\{-\frac{1}{2}+\frac{1}{2} \sqrt{3} \imath,-\frac{1}{2}-\frac{1}{2} \sqrt{3} r, 1\right\}$ wrt multiplication

Properties of groups

More Examples...(Groups)

1. Cyclic group: A group \mathcal{G} is called cyclic if, for some $a \in \mathcal{G}$, every $x \in \mathcal{G}$ is of the form a^{m}, where $m \in I$. The element ais called generator of \mathcal{G}.
2. Permutation group: The set S_{n} of $n!$ permutations of n symbols; let us term permutation operation as 'o' then S_{n} is group wrt this operation; since operation \circ is not commutative, S_{n} is non-abelian

Homomorphism

- Let \mathcal{G} be with \circ, and \mathcal{G}^{\prime} with \square be groups
- Homomorphic mapping means,
- $\mathcal{G} \rightarrow \mathcal{G}^{\prime}: g \rightarrow g^{\prime}$ such that

1. every $g \in \mathcal{G}$ has a unique image $g^{\prime} \in \mathcal{G}^{\prime}$
2. if $a \rightarrow a^{\prime}$ and $b \rightarrow b^{\prime}$, then $a \circ b \rightarrow a^{\prime} \square b^{\prime}$
3. And if, every $g^{\prime} \in \mathcal{G}^{\prime}$ is an image, then we have a homnomorphism of \mathcal{G} onto \mathcal{G}^{\prime} and \mathcal{G}^{\prime} is called homomorphic image of \mathcal{G}.

Isomorphism

- If homomorphic mapping is also one-to-one (and is onto), i.e.,
- $g \leftrightarrow g^{\prime}$
- \mathcal{G} and \mathcal{G}^{\prime} are called isomorphic \& the mapping is called isomorphism

Rings

Definition

- A non-empty set \mathcal{R} is said to form a ring wrt binary operation addition $(+)$ and multiplication (\times), provided, for arbitratry, the following properties hold:
$P_{1}: \quad(a+b)+c=a+(b+c)$
$P_{2}: a+b=b+a$
P_{3} : there exists $z \in \mathcal{R}$ such that
(associative law, +) (commutative law, +)
(existence of additive identity)
$a+z=z+a$
$P_{4}: \quad$ For each $a \in \mathcal{R}$ there exists $-a \in \mathcal{R}$
(existence of additive inverse)
such that $a+(-a)=z$
$P_{5}: \quad(a \cdot b) \cdot c=a \cdot(b \cdot c)$
$P_{6}: \quad a(b+c)=a \cdot b+a \cdot c$
$P_{7}: \quad(b+c) a=b \cdot a+c \cdot a$
(associative law, \times) (distributive law) (distributive law)

Rings, examples

- Sets I, Q, R and C are rings
- Set $S=\{a, b\}$ with + and \times

+	a	b				
a	a	b				
b	b	a	\quad and \quad	\cdot	a	b
:---:	:---:	:---:				
a	a	b				
b	b	a				

- Set $T=\{a, b, c, d\}$ with + and \times

- Set Q with addition (\oplus) and multiplication (\odot) defined by
- $a \oplus b=a \cdot b$ and $a \odot b=a+b$
- is not a ring, as P_{4}, P_{6}, and P_{7} are not satisfied

Properties of Rings

- Every ring is an abelian additive group
- There exists a unique aditive element z
- Each element has a unique additive inverse
- Cancellation law for addition holds
- $-(-a)=a,-(a+b)=(-a)+(-b)$
- $a \cdot z=z \cdot a=z$
- $a(-b)=-(a b)=(-a) b$

Homomorphism \& Isomorphism

A homomorphism (isomorphism) of the additive group of a ring \mathcal{R} into (onto) the additive group of ring \mathcal{R}^{\prime} which also preserves the second operation, is called a homomorphism (isomorphism) of \mathcal{R} into (onto) \mathcal{R}^{\prime}.

Euclidean Ring

- Any communitative ring \mathcal{R} having the property that to each $x \in \mathcal{R}$ a non-negative integer $\theta(x)$ can be assigned such that,
- $\theta(x)=0$ iff $x=z$, the zero element of \mathcal{R}
- $\theta(x \cdot y) \geqslant \theta(x)$ when $x \cdot y \neq z$
- for every \mathcal{R} and $y \neq z \in \mathcal{R}$,

$$
\text { - } x=y \cdot q+r \quad 0 \leq \theta(r)<\theta(y)
$$

Integral Domains \& Divison Rings

Integral Domains A commucative ring \mathcal{D}, with unity and having no divisors of zero, is called an integral domain.
Divison Rings A ring \mathcal{S}, whose non-zero elements form a multiplicative group, is called a divison ring (skew field).

Divison Rings

- Thus, every divison ring \mathcal{S} has a unity and each of its non-zero elements has a multiplicative inverse.
- Multiplication is however not necessarily commutative.

Fields

- A ring \mathcal{S}, whose non-zero elements form an abelian multiplicative group is called a field.
- Every field is an integral domain

Vector operations

- Scalar multiplication-
- let vector be $\xi_{1}=(a, b)$; the multiplication by 3 , a scalar is defined as $3 \cdot \xi_{1}=(3 a, 3 b)$
- Vector addition-
- for two vectors, $\xi_{1}=(a, b)$ and $\xi_{1}=(c, d)$, $\xi=\xi_{1}+\xi_{2}=(a+c, b+d)$
- Let's denote by V, the set of all vectors in a plane, i.e. $V=R \times R$
- V has a zero element $\zeta=(0,0)$; every ξ has additive inverse; $\Rightarrow V$ is an abelian group
- for $s, t \in R$ and $\xi, \zeta \in V$; following properties holds

$$
\begin{aligned}
& \quad s(\xi+\eta)=s \xi+s \eta \quad(s+t) \xi=s \xi+t \xi \quad s(t \xi)=(s t) \xi \\
& \mathbf{1} \xi=\xi
\end{aligned}
$$

Vector Space

- Let \mathcal{F} be a field and V be an abelian addititve group such that there is a scalr multiplication of V by \mathcal{F}, which associates with each $s \in \mathcal{F}$ and $\xi \in V$ the element $s \xi \in V$. Then V is called a vector space over \mathcal{F} provided, with u the unity of \mathcal{F}, following holds
- $s(\xi+\eta)=s \xi+s \eta$
$(s+t) \xi=s \xi+t \xi$
$s(t \xi)=(s t) \xi$
$u \xi=\xi$
- Sub space-
- A non empty U of a vector space V over \mathcal{F} is a subspace of V provided U is itself a vector space over \mathcal{F}.

Vector Sub-space

Theorem A non-empty subset U of a vector space V over \mathcal{F} is a subspace of V iff U is closed wrt scalar multiplication and vector addition as defined on V.
Theorem The set U of all linear combinations of an arbitrary set S of vectors $\left(2^{|S|}\right)$ of a space V is a sub space of V.

- In turn vectors of S area called generators of the space U.
- Let $U=\left\{k_{1} \xi_{1}+k_{2} \xi_{2}+\cdots k_{m} \xi_{m}: k_{i} \in F\right\}$ be the space spanned by $S=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ a subset of vectors of V over \mathcal{F}
- It remains to find minimum set of vectors necessary to span a given space U
- as any ξ_{j} if can be written as combination of other vectors of S, then ξ_{j} may be excluded from S, and remaining vectors will still span U.

Linear Dependence

- $\sum k_{i} \xi_{i}=k_{1} \xi_{1}+k_{2} \xi_{2}+\cdots k_{m} \xi_{m}=\zeta$
- A non-empty subset S of a vector space V over \mathcal{F} is called linearly dependent over \mathcal{F} iff there exists $k_{1}, k_{2}, \cdots k_{m} \in \mathcal{F}: \exists k_{i} \neq z$
- A non-empty subset S of a vector space V over \mathcal{F} is called linearly independent over \mathcal{F} iff there exists
$k_{1}, k_{2}, \cdots k_{m} \in \mathcal{F}$: every $k_{i}=z$
Theorem If some one of the set $S=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ of vectors in V over \mathcal{F} is zero vecor ζ, then necessarily S is a linearly depdent set.
Theorem A set of non-zero vectors S of V over \mathcal{F} is also linearly dependent iff some one of ξ_{j} can be expressed as linear combination of the vectors $\xi_{1}, \xi_{2}, \ldots, \xi_{j-1}$, which precedes it.
Theorem Any finite set S of vectors, not all the zero vector, contains a linearly indepdendent subset U which spans the same vector space as S.

Bases of a Vector Space

- A set $S=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ of vectors of a vector space V over \mathcal{F} is called a basis of V provided

1. S is linearly independent set,
2. the vectors of S span V

- Let's define unit vectors of $V_{n}(\mathcal{F})$

$$
\begin{aligned}
\epsilon_{1} & =(u, 0,0,0, \ldots, 0,0) \\
\epsilon_{2} & =(0, u, 0,0, \ldots, 0,0) \\
\vdots & \vdots \\
\epsilon_{n} & =(0,0,0,0, \ldots, 0, u)
\end{aligned}
$$

- and consider linear combination,

$$
\xi=a_{1} \epsilon_{1}+a_{2} \epsilon_{2}+\cdots a_{n} \epsilon_{n}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad a_{i} \in \mathcal{F}
$$

- If $\xi=\zeta$, then $a_{1},=a=\ldots=a_{n}=z$; and hence $E=\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right)$ is a linearly independent set.

Bases of a Vector Space

Theorem If $S=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ is a basis of the vector space V over \mathcal{F} and $T=\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right\}$ is any linearly independent set of vectors of V, then $n \leqslant m$.
Theorem As a consequence, if If $S=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ is a basis of the vector space V over \mathcal{F}, then any $m+1$ vectors of V necessarily form a linearly dependent set.
Theorem Every basis of a vector space V over \mathcal{F} has the same number of elements. This number is called dimension of V.

Sub-spaces of a vector

- Let V, of dimension n, be a vector space over \mathcal{F} and U, of dimension $n<m$ having $B=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ as basis, be a sub-space of V. Then, only m of the unit vectors of V can be written as linear combination of elements of B; hence there exist vectors of V which are not in U.
- $k_{1} \xi_{1}+k_{2} \xi_{2}+\cdots+k_{m} \xi_{m}+k \eta_{1}=\zeta \quad \forall k_{i}, k \in F$
- now $k=z$ since otherwise $k^{-1} \in F$, and $\eta_{1}=k^{-1}\left(-k_{1} \xi_{1}-k_{2} \xi_{2}-\cdots-k_{m} \xi_{m}\right)$, and $\eta_{1} \in U$, which is contrary to definition of η_{1}, hence PROVED.

Theorem If $B=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ is basis of $U \subset V, V$ having dimension n, there exist vectors $\eta_{1}, \eta_{2}, \ldots, \eta_{n-m}$ in V such that $B \cup\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{n-m}\right\}$ is basis of V.
Theorem If, in $V_{n}(R)$, a vector η is orthogonal to each vector of the set $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$, then η is orthogonal to every vector of the space spanned by this set.

Vector Spaces over R

- Let's focus on to vector space $V=V_{n}(R)$ over R.
- for 2-dimensional vetors, $\xi=\left(a_{1}, a_{2}\right)$ and

$$
\eta=\left(b_{1}, b_{2}\right) \cos \theta=\frac{a_{1} b_{1}+a_{2} b_{2}}{|\xi| \cdot|\eta|}
$$

- Hence, inner product is defined as, $\xi \cdot \eta=a_{1} b_{1}+a_{2} b_{2}$
- For n-dimensional $V_{n}(R)$, for all $\xi=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and

$$
\begin{aligned}
\eta & =\left(b_{1}, b_{2}, \ldots, b_{n}\right) \\
& \bullet \xi \cdot \eta=\sum a_{i} b_{i}
\end{aligned}
$$

- Suppose in $V_{n}(R)$, a vector η is orthogonal to each vector of the set $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$, then η is orthogonal to every vector of the space spanned by this set.

Linear Transformations

- A linear transformation of a vector space $V(\mathcal{F})$ into a vector space $W(\mathcal{F})$ over the same field F is a mapping T of $V(\mathcal{F})$ into $W(\mathcal{F})$ for which
- $\left(\xi_{i}+\xi_{j}\right) T=\xi_{i} T+\xi_{j} T$
- $\left(s \xi_{i}\right) T=s\left(\xi_{i} T\right)$

Linear Transformations, Ex.

- A linear transformation examples (pp 150/Schaum)
- In cases, when $W(\mathcal{F})=V(\mathcal{F})$, i.e. T is mapping of $V(\mathcal{F})$ into itself,
- $T:(x, y) \rightarrow(x \cos \alpha-y \sin \alpha, x \sin \alpha+y \cos \alpha)$
- Any linear transformation of a vector space into itself can be described completely by exibiting its effect on the unit basis vectors of the space.
- If T is a transformation of $V(\mathcal{F})$ into itself and W is a subspace of $V(\mathcal{F})$, then W_{T} is also a subspace of $V(\mathcal{F})$; here $W_{T}=\{\xi T: \xi \in W\}$ is image of W under T

Algebra of Linear Transformations

- Let's denote by \mathcal{A} the set of all linear transformations of a given vector space $V(\mathcal{F})$ over F into itself and \mathcal{M} the set of all non-singular linear transformations in \mathcal{A}.
- Let addition (+) and multiplication (\cdot) on \mathcal{A} defined by
- $A+B: ~ \xi(A+B)=\xi A+\xi B$
- $A \cdot B: \quad \xi(A \cdot B)=(\xi A) B$
- scalar multiplication, $k A: \quad \xi(k A)=(k \xi) A$

