Vector Spaces

Vineet Sahula, sahula@ieee.org

Malaviya National Institute of Technology, Jaipur

I Odd Semester 2012

Groups

- 1. A non-empty set \mathcal{G} on which a binary operation \circ is defined,
- 2. provided, for $a, b, c \in G$, the following properties hold-
 - 2.1 P_1 : $(a \circ b) \circ c = a \circ (b \circ c)$ Associative law
 - 2.2 P_2 : There exists $u \in \mathcal{G}$ such that $u \circ a = a \circ u = a$ Existence of Identity element
 - 2.3 P_3 : For each $a \in \mathcal{G}$, there exists $a^{-1} \in \mathcal{G}$ such that $a \circ a^{-1} = a^{-1} \circ a = u$

Groups...

- 1. A group is *Abelian*, if the group operation is commutative; else it is *non-abelian*
- 2. Examples
 - 2.1 Set *I* of integers, wrt addition 2.2 Check set $A = \{-3, -2, -1, 0, 1, 2, 3\}$ wrt addition ? 2.3 set of cuberoots of '1' $\Rightarrow A = \{\omega_1, \omega_2, \omega_3\} = \left\{-\frac{1}{2} + \frac{1}{2}\sqrt{3}\imath, -\frac{1}{2} - \frac{1}{2}\sqrt{3}\imath, 1\right\}$ wrt multiplication

Properties of groups

More Examples...(Groups)

- Cyclic group: A group G is called cyclic if, for some a ∈ G, every x ∈ G is of the form a^m, where m ∈ I. The element ais called generator of G.
- Permutation group: The set S_n of n! permutations of n symbols; let us term permutation operation as 'o' then S_n is group wrt this operation; since operation o is not commutative, S_n is non-abelian

Homomorphism

- Let \mathcal{G} be with \circ , and \mathcal{G}' with \Box be groups
- Homomorphic mapping means,
 - $\mathcal{G}
 ightarrow \mathcal{G}' : \boldsymbol{g}
 ightarrow \boldsymbol{g}'$ such that
 - 1. every $g \in \mathcal{G}$ has a unique image $g' \in \mathcal{G}'$
 - 2. if $a \to a'$ and $b \to b'$, then $a \circ b \to a' \Box b'$
 - And if, every g' ∈ G' is an image, then we have a homnomorphism of G onto G' and G' is called homomorphic image of G.

Isomorphism

- If homomorphic mapping is also one-to-one (and is *onto*), i.e.,
 - $g \leftrightarrow g'$
 - G andG' are called isomorphic & the mapping is called isomorphism

A non-empty set R is said to form a ring wrt binary operation addition (+) and multiplication (×), provided, for arbitratry, the following properties hold:

Rings, examples

	Sets I, Q, R and C are rings														
	Set $S = \{a, b\}$ with $+$ and \times														
		+	а	b			·	а	b						
	•	а	а	b	and		а	а	b						
		b	b	а			b	b	а						
• Set $T = \{a, b, c, d\}$ with $+$ and \times															
		+	а	b	С	d	and		•	а	b	С	d		
		а	а	b	С	d			а	а	а	а	а		
	•	b	b	а	d	С			b	а	b	а	b		
		С	C	d	а	b			С	а	С	а	С		
		d	d	С	b	а			d	а	d	а	d		

▶ Set Q with addition (⊕) and multiplication (\odot) defined by

- $a \oplus b = a \cdot b$ and $a \odot b = a + b$
- ▶ is not a ring, as P₄, P₆, and P₇ are not satisfied

Properties of Rings

- Every ring is an abelian additive group
- There exists a unique aditive element z
- Each element has a unique additive inverse
- Cancellation law for addition holds

$$\bullet a \cdot z = z \cdot a = z$$

Homomorphism & Isomorphism

A homomorphism (isomorphism) of the additive group of a ring \mathcal{R} into (onto) the additive group of ring \mathcal{R}' which also preserves the second operation, is called a homomorphism (isomorphism) of \mathcal{R} into (onto) \mathcal{R}' .

Euclidean Ring

- Any communitative ring R having the property that to each x ∈ R a non-negative integer θ(x) can be assigned such that,
 - $\theta(x) = 0$ iff x = z, the zero element of \mathcal{R}
 - $\theta(x \cdot y) \ge \theta(x)$ when $x \cdot y \ne z$
 - for every \mathcal{R} and $y \neq z \in \mathcal{R}$,
 - $x = y \cdot q + r \qquad 0 \le \theta(r) < \theta(y)$

Integral Domains & Divison Rings

Integral Domains A commucative ring D, with unity and having no divisors of zero, is called an *integral domain*. Divison Rings A ring S, whose non-zero elements form a multiplicative group, is called a *divison rin*g (*skew field*).

Divison Rings

- Thus, every divison ring S has a unity and each of its non-zero elements has a multiplicative inverse.
- Multiplication is however not necessarily commutative.

Fields

- A ring S, whose non-zero elements form an abelian multiplicative group is called a *field*.
- Every field is an integral domain

Vector operations

- Scalar multiplication-
 - In the function of the second se
- Vector addition-
 - for two vectors, ξ₁ = (a, b) and ξ₁ = (c, d),
 ξ = ξ₁ + ξ₂ = (a + c, b + d)
- Let's denote by V, the set of all vectors in a plane, i.e. $V = R \times R$
 - V has a zero element ζ = (0,0); every ξ has additive inverse; ⇒ V is an abelian group
 - ▶ for $s, t \in R$ and $\xi, \zeta \in V$; following properties holds

$$s(\xi + \eta) = s\xi + s\eta \qquad (s+t)\xi = s\xi + t\xi \qquad s(t\xi) = (st)\xi$$
$$1\xi = \xi$$

Vector Space

Let *F* be a field and *V* be an abelian additive group such that there is a scalr multiplication of *V* by *F*, which associates with each *s* ∈ *F* and *ξ* ∈ *V* the element *sξ* ∈ *V*. Then *V* is called a vector space over *F* provided, with *u* the unity of *F*, following holds

$$\mathbf{s}(\xi + \eta) = \mathbf{s}\xi + \mathbf{s}\eta \qquad (\mathbf{s} + t)\xi = \mathbf{s}\xi + t\xi \qquad \mathbf{s}(t\xi) = (\mathbf{s}t)\xi \\ u\xi = \xi$$

- Sub space-
 - A non empty U of a vector space V over F is a subspace of V provided U is itself a vector space over F.

Vector Sub-space

Theorem A non-empty subset U of a vector space V over \mathcal{F} is a subspace of V iff U is closed wrt scalar multiplication and vector addition as defined on V.

Theorem The set *U* of all linear combinations of an arbitrary set *S* of vectors $(2^{|S|})$ of a space *V* is a sub space of *V*.

- ▶ In turn vectors of *S* area called *generators* of the space *U*.
- Let U = {k₁ξ₁ + k₂ξ₂ + · · · k_mξ_m : k_i ∈ F} be the space spanned by S = {ξ₁, ξ₂, . . . , ξ_m} a subset of vectors of V over F
- It remains to find minimum set of vectors necessary to span a given space U
 - as any ξ_j if can be written as combination of other vectors of S, then ξ_j may be excluded from S, and remaining vectors will still span U.

Linear Dependence

- $\blacktriangleright \sum k_i \xi_i = k_1 \xi_1 + k_2 \xi_2 + \cdots + k_m \xi_m = \zeta$
- A non-empty subset S of a vector space V over F is called linearly dependent over F iff there exists k₁, k₂, · · · k_m ∈ F : ∃ k_i ≠ z
- A non-empty subset S of a vector space V over F is called *linearly independent* over F iff there exists k₁, k₂, ... k_m ∈ F : every k_i = z
- Theorem If some one of the set $S = \{\xi_1, \xi_2, \dots, \xi_m\}$ of vectors in *V* over \mathcal{F} is zero vecor ζ , then necessarily *S* is a linearly depdent set.
- Theorem A set of non-zero vectors *S* of *V* over \mathcal{F} is also *linearly dependent* iff some one of ξ_j can be expressed as linear combination of the vectors $\xi_1, \xi_2, \ldots, \xi_{j-1}$, which precedes it.
- Theorem Any finite set S of vectors, not all the zero vector, contains a linearly independent subset U which spans the same vector space as S.

Bases of a Vector Space

- A set S = {ξ₁, ξ₂,..., ξ_m} of vectors of a vector space V over F is called a basis of V provided
 - 1. S is linearly independent set,
 - 2. the vectors of S span V
- Let's define unit vectors of $V_n(\mathcal{F})$

$$\begin{array}{rcl}
\epsilon_1 &=& (u, 0, 0, 0, \dots, 0, 0) \\
\epsilon_2 &=& (0, u, 0, 0, \dots, 0, 0) \\
\vdots &\vdots &\vdots \\
\epsilon_n &=& (0, 0, 0, 0, \dots, 0, u)
\end{array}$$

and consider linear combination, ξ = a₁ε₁ + a₂ε₂ + ··· a_nε_n = (a₁, a₂, ..., a_n) a_i ∈ F
If ξ = ζ, then a₁, = a = ... = a_n = z; and hence E = (ε₁, ε₂, ..., ε_n) is a linearly independent set.

Bases of a Vector Space

- Theorem If $S = \{\xi_1, \xi_2, \dots, \xi_m\}$ is a basis of the vector space *V* over \mathcal{F} and $T = \{\eta_1, \eta_2, \dots, \eta_n\}$ is any linearly independent set of vectors of *V*, then $n \leq m$.
- Theorem As a consequence, if If $S = \{\xi_1, \xi_2, \dots, \xi_m\}$ is a basis of the vector space *V* over \mathcal{F} , then any m + 1 vectors of *V* necessarily form a linearly dependent set.
- Theorem Every basis of a vector space V over \mathcal{F} has the same number of elements. This number is called *dimension* of V.

Sub-spaces of a vector

Let V, of dimension n, be a vector space over F and U, of dimension n < m having B = {ξ₁, ξ₂, ..., ξ_m} as basis, be a sub-space of V. Then, only m of the unit vectors of V can be written as linear combination of elements of B; hence there exist vectors of V which are not in U.

$$k_1\xi_1 + k_2\xi_2 + \cdots + k_m\xi_m + k\eta_1 = \zeta \quad \forall k_i, k \in F$$

- ▶ now k = z since otherwise $k^{-1} \in F$, and $\eta_1 = k^{-1} (-k_1\xi_1 - k_2\xi_2 - \cdots - k_m\xi_m)$, and $\eta_1 \in U$, which is contrary to definition of η_1 , hence PROVED.
- Theorem If $B = \{\xi_1, \xi_2, \dots, \xi_m\}$ is basis of $U \subset V$, V having dimension n, there exist vectors $\eta_1, \eta_2, \dots, \eta_{n-m}$ in V such that $B \cup \{\eta_1, \eta_2, \dots, \eta_{n-m}\}$ is basis of V.
- Theorem If, in $V_n(R)$, a vector η is orthogonal to each vector of the set $\{\xi_1, \xi_2, \dots, \xi_m\}$, then η is orthogonal to every vector of the space spanned by this set.

Vector Spaces over R

• Let's focus on to vector space $V = V_n(R)$ over R.

- ► for 2-dimensional vetors, $\xi = (a_1, a_2)$ and $\eta = (b_1, b_2)\cos \theta = \frac{a_1b_1+a_2b_2}{|\xi| \cdot |\eta|}$
- Hence, inner product is defined as, $\xi \cdot \eta = a_1 b_1 + a_2 b_2$
- For n-dimensional $V_n(R)$, for all $\xi = (a_1, a_2, \dots, a_n)$ and $\eta = (b_1, b_2, \dots, b_n)$

• $\xi \cdot \eta = \sum a_i b_i$

Suppose in V_n(R), a vector η is orthogonal to each vector of the set {ξ₁, ξ₂,..., ξ_m}, then η is orthogonal to every vector of the space spanned by this set.

Linear Transformations

A linear transformation of a vector space V(F) into a vector space W(F) over the same field F is a mapping T of V(F) into W(F) for which

$$(\xi_i + \xi_j) T = \xi_i T + \xi_j T$$

$$\bullet (s\xi_i) T = s(\xi_i T)$$

Linear Transformations, Ex.

A linear transformation examples (pp 150/Schaum)

- In cases, when W(𝔅) = V(𝔅), i.e. T is mapping of V(𝔅) into itself,
- ► T: $(x, y) \rightarrow (x \cos \alpha y \sin \alpha, x \sin \alpha + y \cos \alpha)$
- Any linear transformation of a vector space into itself can be described completely by exibiting its effect on the unit basis vectors of the space.
- If *T* is a transformation of *V*(*F*) into itself and *W* is a subspace of *V*(*F*), then *W_T* is also a subspace of *V*(*F*); here *W_T* = {ξ*T* : ξ ∈ *W*} is image of *W* under *T*

Algebra of Linear Transformations

- ► Let's denote by Athe set of all linear transformations of a given vector space V(F) over F into itself and M the set of all non-singular linear transformations in A.
- Let addition (+) and multiplication (\cdot) on \mathcal{A} defined by

•
$$A+B: \xi(A+B) = \xi A + \xi B$$

- $A \cdot B : \xi(A \cdot B) = (\xi A)B$
- scalar multiplication, $kA : \xi(kA) = (k\xi)A$