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Groups

1. A non-empty set G on which a binary operation ◦is defined,
2. provided, for a, b, c ∈ G, the following properties hold-

2.1 P1: (a ◦ b) ◦ c = a ◦ (b ◦ c) Associative law
2.2 P2: There exists u ∈ G such that u ◦ a = a ◦ u = a

Existence of Identity element
2.3 P3: For each a ∈ G, there exists a−1 ∈ G such that

a ◦ a−1 = a−1 ◦ a = u
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Groups...

1. A group is Abelian, if the group operation is commutative;
else it is non-abelian

2. Examples

2.1 Set I of integers, wrt addition
2.2 Check set A = {−3,−2,−1, 0, 1, 2, 3} wrt addition ?
2.3 set of cuberoots of ’1’

⇒A = {ω1, ω2, ω3} =
{
− 1

2 + 1
2

√
3ı,− 1

2 − 1
2

√
3ı, 1

}
wrt

multiplication
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Properties of groups

Theorem
Cancellation law: if a, b, c ∈ G, then a ◦ b = a ◦ c ⇒b = c
For a, b ∈ G, each of the equations a ◦ x = b, y ◦ a = b has a
unique solution
For every a, inverse of inverse of a is a, i.e. (a−1)−1 = a
For every a, b ∈ G, (a ◦ b)−1 = b−1 ◦ a−1

For every a, b, . . . , p.q ∈ G,
(a ◦ b ◦ · · · ◦ p ◦ q)−1 = q−1 ◦ p−1 ◦ · · ·b−1 ◦ a−1

For any a ∈ G, (i) am ◦ an = am+n, and (ii) (am)n = amn
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More Examples...(Groups)

1. Cyclic group: A group Gis called cyclic if, for some a ∈ G,
every x ∈ G is of the form am, where m ∈ I. The element
ais called generator of G.

2. Permutation group: The set Sn of n! permutations of n
symbols; let us term permutation operation as ’◦’ then Sn is
group wrt this operation; since operation ◦ is not
commutative, Sn is non-abelian
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Homomorphism

I Let G be with ◦, and G′ with � be groups
I Homomorphic mapping means,

I G → G′ : g → g′ such that

1. every g ∈ G has a unique image g′ ∈ G′

2. if a → a′ and b → b′, then a ◦ b → a′�b′

3. And if, every g′ ∈ G′ is an image, then we have a
homnomorphism of G onto G′ and G′ is called homomorphic
image of G.

6



Isomorphism

I If homomorphic mapping is also one-to-one (and is onto),
i.e.,

I g ↔ g′

I G andG′ are called isomorphic & the mapping is called
isomorphism
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Rings
Definition

I A non-empty set R is said to form a ring wrt binary
operation addition (+) and multiplication (×), provided, for
arbitratry , the following properties hold:

P1: (a + b) + c = a + (b + c) (associative law, +)

P2: a + b = b + a (commutative law, +)

P3: there exists z ∈ R such that

a + z = z + a

(existence of additive identity)

P4 : For each a ∈ R there exists −a ∈ R
such that a + (−a) = z

(existence of additive inverse)

P5: (a · b) · c = a · (b · c) (associative law, ×)

P6: a(b + c) = a · b + a · c (distributive law)

P7: (b + c)a = b · a + c · a (distributive law)
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Rings, examples

I Sets I, Q, R and C are rings
I Set S = {a, b} with + and ×

I
+ a b
a a b
b b a

and
· a b
a a b
b b a

I Set T = {a, b, c, d} with + and ×

I

+ a b c d
a a b c d
b b a d c
c c d a b
d d c b a

and

· a b c d
a a a a a
b a b a b
c a c a c
d a d a d

I Set Q with addition (⊕) and multiplication (�) defined by
I a ⊕ b = a · b and a � b = a + b
I is not a ring, as P4, P6, and P7 are not satisfied
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Properties of Rings

I Every ring is an abelian additive group
I There exists a unique aditive element z
I Each element has a unique additive inverse
I Cancellation law for addition holds
I −(−a) = a,-(a+b)=(-a)+(-b)
I a · z = z · a = z
I a(−b) = −(ab) = (−a)b
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Homomorphism & Isomorphism

A homomorphism (isomorphism) of the additive group of a ring
Rinto (onto) the additive group of ring R′ which also preserves
the second operation, is called a homomorphism
(isomorphism) of R into (onto) R′.
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Euclidean Ring

I Any communitative ring R having the property that to each
x ∈ R a non-negative integer θ(x) can be assigned such
that,

I θ(x) = 0 iff x = z, the zero element of R
I θ(x · y) > θ(x) when x · y 6= z
I for every R and y 6= z ∈ R ,

I x = y · q + r 0 ≤ θ(r) < θ(y)
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Integral Domains & Divison Rings

Integral Domains A commucative ring D, with unity and having
no divisors of zero, is called an integral domain.

Divison Rings A ring S, whose non-zero elements form a
multiplicative group, is called a divison ring (skew
field).
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Divison Rings

I Thus, every divison ring S has a unity and each of its
non-zero elements has a multiplicative inverse.

I Multiplication is however not necessarily commutative.
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Fields

I A ring S, whose non-zero elements form an abelian
multiplicative group is called a field.

I Every field is an integral domain
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Vector operations

I Scalar multiplication-
I let vector be ξ1 = (a, b); the multiplication by 3, a scalar is

defined as 3 · ξ1 = (3a, 3b)

I Vector addition-
I for two vectors, ξ1 = (a, b) and ξ1 = (c, d),

ξ = ξ1 + ξ2 = (a + c, b + d)

I Let’s denote by V , the set of all vectors in a plane, i.e.
V = R × R

I V has a zero element ζ = (0, 0); every ξ has additive
inverse; ⇒ V is an abelian group

I for s, t ∈ R and ξ, ζ ∈ V ; following properties holds
I s(ξ + η) = sξ + sη (s + t)ξ = sξ + tξ s(tξ) = (st)ξ

1ξ = ξ
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Vector Space

I Let F be a field and V be an abelian addititve group such
that there is a scalr multiplication of V by F , which
associates with each s ∈ F and ξ ∈ V the element sξ ∈ V .
Then V is called a vector space over F provided, with u
the unity of F , following holds

I s(ξ + η) = sξ + sη (s + t)ξ = sξ + tξ s(tξ) = (st)ξ
uξ = ξ

I Sub space-
I A non empty U of a vector space V over F is a subspace of

V provided U is itself a vector space over F .
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Vector Sub-space

Theorem A non-empty subset U of a vector space V over F
is a subspace of V iff U is closed wrt scalar
multiplication and vector addition as defined on V .

Theorem The set U of all linear combinations of an arbitrary
set S of vectors (2|S|) of a space V is a sub space
of V .

I In turn vectors of S area called generators of the space U.
I Let U = {k1ξ1 + k2ξ2 + · · · kmξm : ki ∈ F} be the space

spanned by S = {ξ1, ξ2, . . . , ξm} a subset of vectors of V
over F

I It remains to find minimum set of vectors necessary to
span a given space U

I as any ξj if can be written as combination of other vectors of
S, then ξj may be excluded from S, and remaining vectors
will still span U.
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Linear Dependence
I

∑
kiξi = k1ξ1 + k2ξ2 + · · · kmξm = ζ

I A non-empty subset S of a vector space V over F is called
linearly dependent over F iff there exists
k1, k2, · · · km ∈ F : ∃ ki 6= z

I A non-empty subset S of a vector space V over F is called
linearly independent over F iff there exists
k1, k2, · · · km ∈ F : every ki = z

Theorem If some one of the set S = {ξ1, ξ2, . . . , ξm} of
vectors in V over F is zero vecor ζ, then
necessarily S is a linearly depdent set.

Theorem A set of non-zero vectors S of V over F is also
linearly dependent iff some one of ξjcan be
expressed as linear combination of the vectors
ξ1, ξ2, . . . , ξj−1, which precedes it.

Theorem Any finite set S of vectors, not all the zero vector,
contains a linearly indepdendent subset U which
spans the same vector space as S.
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Bases of a Vector Space
I A set S = {ξ1, ξ2, . . . , ξm} of vectors of a vector space V

over F is called a basis of V provided
1. S is linearly independent set,
2. the vectors of S span V

I Let’s define unit vectors of Vn(F)

ε1 = (u, 0, 0, 0, . . . , 0, 0)

ε2 = (0, u, 0, 0, . . . , 0, 0)

...
...

...
εn = (0, 0, 0, 0, . . . , 0, u)

I and consider linear combination,
ξ = a1ε1 + a2ε2 + · · · anεn = (a1, a2, . . . , an) ai ∈ F

I If ξ = ζ, then a1, = a = . . . = an = z; and hence
E = (ε1, ε2, . . . , εn) is a linearly independent set.
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Bases of a Vector Space

Theorem If S = {ξ1, ξ2, . . . , ξm} is a basis of the vector
space V over F and T = {η1, η2, . . . , ηn} is any
linearly independent set of vectors of V , then
n 6 m.

Theorem As a consequence, if If S = {ξ1, ξ2, . . . , ξm} is a
basis of the vector space V over F , then any
m + 1 vectors of V necessarily form a linearly
dependent set.

Theorem Every basis of a vector space V over Fhas the
same number of elements. This number is called
dimension of V .
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Sub-spaces of a vector

I Let V , of dimension n, be a vector space over F and U, of
dimension n < m having B = {ξ1, ξ2, . . . , ξm} as basis, be a
sub-space of V . Then, only m of the unit vectors of V can
be written as linear combination of elements of B; hence
there exist vectors of V which are not in U.

I k1ξ1 + k2ξ2 + · · · + kmξm + kη1 = ζ ∀ki , k ∈ F
I now k = z since otherwise k−1 ∈ F , and

η1 = k−1 (−k1ξ1 − k2ξ2 − · · · − kmξm), and η1 ∈ U, which is
contrary to definition of η1 , hence PROVED.

Theorem If B = {ξ1, ξ2, . . . , ξm} is basis of U ⊂ V , V having
dimension n, there exist vectors η1, η2, . . . , ηn−m in
V such that B ∪ {η1, η2, . . . , ηn−m} is basis of V .

Theorem If, in Vn(R), a vector η is orthogonal to each vector
of the set {ξ1, ξ2, . . . , ξm}, then η is orthogonal to
every vector of the space spanned by this set.
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Vector Spaces over R

I Let’s focus on to vector space V = Vn(R) over R.
I for 2-dimensional vetors, ξ = (a1, a2) and

η = (b1, b2)cos θ = a1b1+a2b2
|ξ|·|η|

I Hence, inner product is defined as, ξ · η = a1b1 + a2b2
I For n-dimensional Vn(R), for all ξ = (a1, a2, . . . , an) and

η = (b1, b2, . . . , bn)

I ξ · η =
P

aibi

I Suppose in Vn(R), a vector η is orthogonal to each vector
of the set {ξ1, ξ2, . . . , ξm}, then η is orthogonal to every
vector of the space spanned by this set.
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Linear Transformations

I A linear transformation of a vector space V (F) into a
vector space W (F) over the same field F is a mapping T
of V (F) into W (F) for which

I (ξi + ξj) T = ξiT + ξjT
I (sξi) T = s (ξiT )

24



Linear Transformations, Ex.

I A linear transformation examples (pp 150/Schaum)
I In cases, when W (F) = V (F), i.e. T is mapping of V (F)

into itself,
I T : (x , y) → (x cos α − y sin α, x sin α + y cos α)

I Any linear transformation of a vector space into itself can
be described completely by exibiting its effect on the unit
basis vectors of the space.

I If T is a transformation of V (F) into itself and W is a
subspace of V (F), then WT is also a subspace of V (F);
here WT = {ξT : ξ ∈ W} is image of W under T
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Algebra of Linear Transformations

I Let’s denote by Athe set of all linear transformations of a
given vector space V (F) over F into itself and M the set of
all non-singular linear transformations in A.

I Let addition (+) and multiplication (·) on A defined by
I A + B : ξ(A + B) = ξA + ξB
I A · B : ξ(A · B) = (ξA)B
I scalar multiplication, kA : ξ(kA) = (kξ)A
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