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Groups

1. A non-empty set G on which a binary operation ois defined,
2. provided, for a, b, ¢ € G, the following properties hold-

2.1 Py:(aob)oc=ao(boc) Associative law

2.2 Py: There exists u € G suchthatuoca=aou=a
Existence of Identity element

2.3 Ps: For each a € G, there exists a~! € G such that
aca'=aloa=u



Groups...

1. A group is Abelian, if the group operation is commutative;
else it is non-abelian

2. Examples

2.1 Set | of integers, wrt addition
2.2 Checkset A= {-3,-2,-1,0,1,2,3} wrt addition ?
2.3 set of cuberoots of ’1’
=A= {w1,w2,w3} = {*% + %\/gl, *15 — %\/gl, 1} wrt
multiplication



Properties of groups



More Examples...(Groups)

1. Cyclic group: A group gis called cyclic if, for some a € G,
every x € G is of the form a”, where m € I. The element
ais called generator of G.

2. Permutation group: The set S, of n! permutations of n
symbols; let us term permutation operation as 'o’ then S, is
group wrt this operation; since operation o is not
commutative, S, is non-abelian



Homomorphism

» Let G be with o, and G’ with (] be groups
» Homomorphic mapping means,
» G — G :g— g such that

1. every g € G has a unique image g’ € G’

2. ifa—a and b — b',thenao b — a0b

3. And if, every g’ € G’ is an image, then we have a
homnomorphism of G onto G’ and G’ is called homomorphic
image of G.



Isomorphism

» If homomorphic mapping is also one-to-one (and is onto),
i.e.,
> g<—g
» G andg’ are called isomorphic & the mapping is called
isomorphism
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Rings

Definition
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A non-empty set R is said to form a ring wrt binary
operation addition (+) and multiplication (), provided, for

arbitratry , the following properties hold:

(a+b)+c=a+(b+c)
a+b=b+a

there exists z € R such that
atz=z+a

For each a € R there exists —a€ R
suchthata+ (—a) =z
(a-b)-c=a-(b-c)
alb+c)=a-b+a-c
(b+cla=b-a+c-a

(associative law, +)
(commutative law, +)
(existence of additive identity)

(existence of additive inverse)
(associative law, x)

(distributive law)
(distributive law)



Rings, examples

» Sets /, Q, Rand C are rings
» Set S = {a, b} with + and x

+|a b -la b
> ala b and ala b
b|b a b|b a
» Set T ={a, b, c,d} with + and x
+ b ¢ d -la b ¢ d
a b ¢ d ala a a a
> b a d ¢ and bla b a b
c d a b cla c a c¢
d c b a dla d a d
» Set Q with addition (#) and multiplication (®) defined by

» adb=a-bandacb=a+b
» isnotaring, as Py, Ps, and P; are not satisfied



Properties of Rings

» Every ring is an abelian additive group

» There exists a unique aditive element z

» Each element has a unique additive inverse
» Cancellation law for addition holds

> —(—a) = a-(a+b)=(-a)+(-b)
»a-z=z-a=2

> a(—b) = —(ab) = (—a)b
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Homomorphism & Isomorphism

A homomorphism (isomorphism) of the additive group of a ring
‘Rinto (onto) the additive group of ring R’ which also preserves
the second operation, is called a homomorphism
(isomorphism) of R into (onto) R'.
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Euclidean Ring

» Any communitative ring R having the property that to each
X € R a non-negative integer 6(x) can be assigned such
that,

0(x) = 0iff x = z, the zero element of R

O(x-y)=0(x)whenx -y #z

foreveryRandy #ze R,

> X=y-q+r 0<6(r)<6(y)

>
>
>
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Integral Domains & Divison Rings

Integral Domains A commucative ring D, with unity and having
no divisors of zero, is called an integral domain.

Divison Rings A ring S, whose non-zero elements form a
multiplicative group, is called a divison ring (skew
field).
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Divison Rings

» Thus, every divison ring S has a unity and each of its
non-zero elements has a multiplicative inverse.

» Multiplication is however not necessarily commutative.



Fields

» Aring S, whose non-zero elements form an abelian
multiplicative group is called a field.

» Every field is an integral domain
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Vector operations

» Scalar multiplication-

» let vector be & = (a, b); the multiplication by 3, a scalar is
defined as 3 - & = (3a,3b)
» Vector addition-
» for two vectors, & = (a,b) and & = (¢, d),
E=&+&=(at+c,b+d)
» Let’s denote by V, the set of all vectors in a plane, i.e.
V=RxR

» V has a zero element ¢ = (0,0); every ¢ has additive
inverse; = V is an abelian group
» fors,t € Rand ¢, ¢ € V; following properties holds

> S(E+mn) =sE+sn (s+1)E =8+t s(t§) = (st)¢
16 =¢
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Vector Space

» Let F be afield and V be an abelian addititve group such
that there is a scalr multiplication of V by F, which
associates with each s € 7 and ¢ € V the element s¢ € V.
Then V is called a vector space over F provided, with u
the unity of F, following holds

> s(E+n)=s+sn  (s+HE=sE+1E s(tE) = (st)E
ug¢ =¢

» Sub space-

» A non empty U of a vector space V over F is a subspace of
V provided U is itself a vector space over F.
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Vector Sub-space

Theorem A non-empty subset U of a vector space V over F
is a subspace of V iff U is closed wrt scalar
multiplication and vector addition as defined on V.

Theorem The set U of all linear combinations of an arbitrary

set S of vectors (2!°) of a space V is a sub space
of V.

» In turn vectors of S area called generators of the space U.
» Let U= {ki{ + koo + - kmém : ki € F} be the space
spanned by S = {&1,&2,...,&{m} a subset of vectors of V
over F
» It remains to find minimum set of vectors necessary to
span a given space U
» as any ¢ if can be written as combination of other vectors of

S, then ¢ may be excluded from S, and remaining vectors
will still span U.
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Linear Dependence

> > ki&i = Kki&1 + Koo + - Kmém = ¢

» A non-empty subset S of a vector space V over F is called
linearly dependent over F iff there exists
Ki,ko,-- - kme F: E|k,'7éZ

» A non-empty subset S of a vector space V over F is called
linearly independent over F iff there exists
Ki,ko,---kme F :everyki=z

Theorem If some one of the set S = {&1, &0, ..., &m} of
vectors in V over F is zero vecor ¢, then
necessarily S is a linearly depdent set.

Theorem A set of non-zero vectors S of V over F is also
linearly dependent iff some one of {;can be
expressed as linear combination of the vectors
£1,&2,...,&—1, Which precedes it.

Theorem Any finite set S of vectors, not all the zero vector,
contains a linearly indepdendent subset U which
spans the same vector space as S.
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Bases of a Vector Space
» Aset S = {¢,&,...,&m} of vectors of a vector space V
over F is called a basis of V provided

1. Sis linearly independent set,
2. the vectors of S span V

» Let’s define unit vectors of V,(F)

e1 = (u,0,0,0,...,0,0)
e = (0,u,0,0,...,0,0)

en = (0,0,0,0,...,0,u)

» and consider linear combination,

§=ajer + aep +---anen = (a1,82,...,a8n) aecF
» If¢=( thena;,=a=... = a, = z;and hence

E = (e1,€z,...,¢€p) is a linearly independent set.
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Bases of a Vector Space

Theorem

Theorem

Theorem

If S ={&,&,...,&m} is a basis of the vector
space V over Fand T = {ny,n2,...,nn} is any
linearly independent set of vectors of V, then
n<m.

As a consequence, if If S = {&1,&,...,¢m} is a
basis of the vector space V over F, then any
m + 1 vectors of V necessarily form a linearly
dependent set.

Every basis of a vector space V over Fhas the
same number of elements. This number is called
dimension of V.



Sub-spaces of a vector

» Let V, of dimension n, be a vector space over F and U, of
dimension n < mhaving B = {&,&,...,&m} as basis, be a
sub-space of V. Then, only m of the unit vectors of V can
be written as linear combination of elements of B; hence
there exist vectors of V which are not in U.

> kit + kel + o+ Kmém + Kk =( Yk ke F

» now k = z since otherwise k="' € F, and
m = k=1 (7k1§1 - kgfg — e = kmgm); and m € U, which is
contrary to definition of 7 , hence PROVED.

Theorem If B = {&41,&,...,&{m} is basis of U C V, V having
dimension n, there exist vectors 01,72, ...,97_m in
V such that BU {n1,n2,...,mn—m} is basis of V.

Theorem If, in V,,(R), a vector n is orthogonal to each vector
of the set {4, &2, ... ,&m}, then nis orthogonal to
every vector of the space spanned by this set.

mnN



Vector Spaces over R

» Let’s focus on to vector space V = V,,(R) over R.

» for 2-dimensional vetors, £ = (&, ap) and

0= (b, bp)cos § = afutasbe

» Hence, inner product is defined as, £ - n = ayby + axbe
» For n-dimensional V,(R), for all ¢ = (a4, ag, ..., a,) and
n= (b1,b2,...,bn)
» (=) abi

» Suppose in V;(R), a vector n is orthogonal to each vector
of the set {4, &2, ..., &m}, then 7 is orthogonal to every
vector of the space spanned by this set.



Linear Transformations

» A linear transformation of a vector space V(F) into a
vector space W(F) over the same field F is a mapping T
of V(F) into W(F) for which

» G+ T=6T+§T
> (s&) T =s(&T)



Linear Transformations, Ex.

» A linear transformation examples (pp 150/Schaum)
» In cases, when W(F) = V(F), i.e. T is mapping of V(F)
into itself,
» T: (X,¥y) = (xcosa—ysina,x sina+y cosa)

» Any linear transformation of a vector space into itself can
be described completely by exibiting its effect on the unit
basis vectors of the space.

» If T is a transformation of V(F) into itself and W is a

subspace of V(F), then Wr is also a subspace of V(F);
here Wr = {¢(T : £ € W}isimage of W under T



Algebra of Linear Transformations

» Let’s denote by Athe set of all linear transformations of a
given vector space V/(F) over F into itself and M the set of
all non-singular linear transformations in A.

» Let addition (+) and multiplication (-) on A defined by

» A+B: ((A+B)=¢(A+¢B
» A-B: &A-B)=(¢A)B
» scalar multiplication, kA :  £(kA) = (k§)A



