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Figure: Complexity vs Size of physical systems



Reduced Order Modeling- Why & How?

I VLSI Systems today are more complex

Issue Verification of such systems post-fabrication is
challenging

I size & complexity

Approach Automated model generation for efficient verification

Model Order Reduction An idead in CAD

I for replacing the original large scale systems with
much smaller one

I yet retains behavioral accuracy

Design Space exploration is much easier now as we need to simulate
reduced samll system



Model Order reduction

I Indispensable tool for numerous areas- VLSI interconects, MEMS
(micro-electro-mechanical systems)

I Nevertheless, the concept is general enough to be applicable to
other areas

I Model Order Reduction is very intersting and meaningful
mathematical problem in its own right

I Objectives

I Model-based approach that propagates circuit performance
characteristics in a bottom-up manner

I Accuracy of models must be predictable and controllable
I Model reduction implies automatic generation of the macro

models by operation on the detailed descriptions
I Reduction exploits information about internal structure of the

system
I More effective control on error is possible
I Influence of complicated second-order physical effects included at

system level



Linear Time Invariant (LTI) Systems

Eẋ = Ax(t)+Bu(t)

y(t) = CT x(t)+Du(t)

-
u(t)/U(s)

-
y(t)/Y (s)

Figure: Linear Time Invariant block



Formulation of an LTI

Applying MNA to the RLC interconnect model[
C 0
0 L

][
v̇
i̇

]
= −

[
G B

−BT 0

][
v
i

]
+

[
is
0

]
The equation can be simplified as

L ẋ = −R x +eju

y = eT
k x

Aẋ = x +bu

y = cT x



Formulation of LTI . . .

The transfer function of the system is

Zjk(s) =
y(s)
u(s)

= −cT (I − sA)−1b

Reduced order model that the algorithm is expected to generate

Aq ẋq = xq +bqu

ỹ = cT
q xq

Such that the reduced order transfer function

Z̃jk(s) =
ỹ(s)
u(s)

= −cT
q (I − sAq)

−1bq

matches Zjk with sufficient accuracy



s Domain Analysis

1. Moments

1.1 In case of input being δ(t), the response at ouput port is the
transfer function itself; since Laplace tramsform of impulse
function is UNITY

1.2 Moments of impulse response h(t) are coefficients of powers of s
in Maclaurin expansion of transfer function H(s)

1.3 H(s) =
∞

∑
k=0

mk sk (1)

1.4 mk =
1
k!

× dk H(s)
dsk

∣∣∣∣
s=0

(2)



Characteristic of Impulse Response

H(s) =

ˆ ∞

0
H(t)e−st dt (3)

=

ˆ ∞

0
H(t)

(
1− st + s2 t2

2
+ · · ·+ sk (−1)k tk

k!
+ · · ·

)
dt (4)

= =

ˆ ∞

0

∞

∑
k=0

sk (−1)k tk

k!
H(t)dt (5)

=
∞

∑
k=0

sk (−1)k

k!

∞̂

0

tk H(t)dt (6)



Moments

I Comparing 1 and 6,

mk =
(−1)k

k!

∞̂

0

tk H(t)dt (7)

m0 =

∞̂

0

H(t)dt (8)

m1 = −
∞̂

0

tH(t)dt (9)



Padé approximation

I Representing a function f (x) as quotient of two polynomials,
RN(x)-

f (x) = RN(x) =
a0 +a1x +a2x2 + . . .+anxn

1+b1x +b2x2 + . . .+bmxm(10)

f (x)−RN(x) =
(
c0 + c1x + c2x2 + . . .+ cNxN)

− a0 +a1x +a2x2 + . . .+anxn

1+b1x +b2x2 + . . .+bmxm (11)

I The no. of constants in RN is n +m +1, and in f (x) is N +1;

I Also, here cooefficients ci are f (i)(0)/(i!)of Maclaurin′s series,

I The first N derivatives of f (x) and RN(x) have to be equal at
x = 0

I The coefficients of the powers of x up to and including xN in
numerator ust all be zero.



Padé approximation . . .
I Generate coefficients of rational functions (ratio of polynomials) that are much

more efficient;
I If f (x) = RN (x)at x = 0, the numerator must have no constatn term.

Hence, c0 −a0 = 0.
I For first N derivatives of f (x) and RN (x)to be equal at x = 0, the

coefficients of powers of x up to and including xN in the numerator must
all be zero also.

b1c0 + c1 −a1 = 0

b2c0 +b1c1 + c2 −a2 = 0

b3c0 +b2c1 +b1c2 + c3 −a3 = 0
...

...
...

bmc0 +bm−1c1 +bm−2c2 + . . .cm −am = 0

...
...

...

bmcn−m +bm−1c1 +bm−2c2 + . . .+ cn −an = 0

bmcn−m+1 +bm−1cn−m+2 +bm−2cn−m+3 + . . .+ cn+1 = 0

...
...

...

bmcN−m +bm−1cN−m+1 +bm−2cN−m+2 + . . .+ cN = 0



Eigen Value computation

I Eigen Values & vector

I Ax = λx ⇒ (A−λI)x = 0
I Two matrices A and B are said to be similar, while T is

non-singular

I A = TBT−1 ⇒ B = T−1AT

I Similarity matrices have identical Eigen values

I replacing A: TBT−1x = λx
I BT−1x = λT−1x

I Hence A and B have identical Eigen values, i.e. λ



QR Method for Eigen value computation

I Let a tri-diagonal matrix A = QR be broken into two matrics,
where Q is orthogonal, and R is upper triangular

I And, further B is formed with B = RQ

I Here, R = QT A, hence B = QT AQ and is similar to A

The QR process is iterative, we obtain a sequence of matrices Ai ,
where as i → ∞ Ai tends to be a diagonal (block diagonal with max
size 2×2)

Ai = QiRi

Ai+1 = RiQi

= QT
i AiQi



Vector Space

I Let F be a field and V be an abelian addititve group such that
there is a scalr multiplication of V by F , which associates with
each s ∈ F and ξ ∈ V the element sξ ∈ V . Then V is called a
vector space over F provided, with u the unity of F , following
holds

I s(ξ+η) = sξ+ sη (s + t)ξ = sξ+ tξ s(tξ) = (st)ξ
uξ = ξ

I Sub space-

I A non empty U of a vector space V over F is a subspace of V
provided U is itself a vector space over F .



Vector Sub-space

Theorem A non-empty subset U of a vector space V over F is a
subspace of V iff U is closed wrt scalar multiplication
and vector addition as defined on V .

Theorem The set U of all linear combinations of an arbitrary set S
of vectors (2|S|) of a space V is a sub space of V .

I In turn vectors of S area called generators of the space U.

I Let U = {k1ξ1 + k2ξ2 + · · ·kmξm : ki ∈ F} be the space spanned
by S = {ξ1,ξ2, . . . ,ξm} a subset of vectors of V over F

I It remains to find minimum set of vectors necessary to span a
given space U

I as any ξj if can be written as combination of other vectors of S,
then ξj may be excluded from S, and remaining vectors will still
span U.



Linear Dependence
I ∑kiξi = k1ξ1 + k2ξ2 + · · ·kmξm = ζ
I A non-empty subset S of a vector space V over F is called

linearly dependent over F iff there exists
k1,k2, · · ·km ∈ F : ∃ki 6= z

I A non-empty subset S of a vector space V over F is called
linearly independent over F iff there exists
k1,k2, · · ·km ∈ F : every ki = z

Theorem If some one of the set S = {ξ1,ξ2, . . . ,ξm} of vectors in
V over F is zero vecor ζ, then necessarily S is a
linearly depdent set.

Theorem A set of non-zero vectors S of V over F is also linearly
dependent iff some one of ξjcan be expressed as linear
combination of the vectors ξ1,ξ2, . . . ,ξj−1, which
precedes it.

Theorem Any finite set S of vectors, not all the zero vector,
contains a linearly indepdendent subset U which spans
the same vector space as S.



Bases of a Vector Space
I A set S = {ξ1,ξ2, . . . ,ξm} of vectors of a vector space V over F

is called a basis of V provided

1. S is linearly independent set,
2. the vectors of S span V

I Let’s define unit vectors of Vn(F )

ε1 = (u,0,0,0, . . . ,0,0)

ε2 = (0,u,0,0, . . . ,0,0)
...

...
...

εn = (0,0,0,0, . . . ,0,u)

I and consider linear combination,
ξ = a1ε1 +a2ε2 + · · ·anεn = (a1,a2, . . . ,an) ai ∈ F

I If ξ = ζ, then a1,= a = . . . = an = z; and hence
E = (ε1,ε2, . . . ,εn) is a linearly independent set.



Bases of a Vector Space

Theorem If S = {ξ1,ξ2, . . . ,ξm} is a basis of the vector space V
over F and T = {η1,η2, . . . ,ηn} is any linearly
independent set of vectors of V , then n 6 m.

Theorem As a consequence, if If S = {ξ1,ξ2, . . . ,ξm} is a basis of
the vector space V over F , then any m +1 vectors of V
necessarily form a linearly dependent set.

Theorem Every basis of a vector space V over F has the same
number of elements. This number is called dimension of
V .



Sub-spaces of a vector

I Let V , of dimension n, be a vector space over F and U, of
dimension n < m having B = {ξ1,ξ2, . . . ,ξm} as basis, be a
sub-space of V . Then, only m of the unit vectors of V can be
written as linear combination of elements of B; hence there exist
vectors of V which are not in U.

I k1ξ1 + k2ξ2 + · · ·+ kmξm + kη1 = ζ ∀ki ,k ∈ F
I now k = z since otherwise k−1 ∈ F , and

η1 = k−1 (−k1ξ1 − k2ξ2 −·· ·− kmξm), and η1 ∈ U, which is
contrary to definition of η1 , hence PROVED.

Theorem If B = {ξ1,ξ2, . . . ,ξm} is basis of U ⊂ V , V having
dimension n, there exist vectors η1,η2, . . . ,ηn−m in V
such that B∪{η1,η2, . . . ,ηn−m} is basis of V .

Theorem If, in Vn(R), a vector η is orthogonal to each vector of
the set {ξ1,ξ2, . . . ,ξm}, then η is orthogonal to every
vector of the space spanned by this set.



Vector Spaces over R

I Let’s focus on to vector space V = Vn(R) over R.

I for 2-dimensional vetors, ξ = (a1,a2) and
η = (b1,b2)cos θ = a1b1+a2b2

|ξ|·|η|
I Hence, inner product is defined as, ξ ·η = a1b1 +a2b2
I For n-dimensional Vn(R), for all ξ = (a1,a2, . . . ,an) and

η = (b1,b2, . . . ,bn)

I ξ ·η = ∑ai bi

I Suppose in Vn(R), a vector η is orthogonal to each vector of the
set {ξ1,ξ2, . . . ,ξm}, then η is orthogonal to every vector of the
space spanned by this set.



Orthogonal & Orthonormal Bases

I Two vectors u and v are orthogonal, if their inner product
〈u,v〉 = 0

I The set of vectors {ui}in V are orthonormal, if they are
orthogonal among themselves 〈ui ,uj〉 = 0 for any i 6= j , and each
of ui has length 1.

I When {ui} is a basis of V , then it is orthonormal basis of V



Gram-Schmidt Process (Orthogonalization)

I In an N-dimensional space, there can be no more than N vectors
that are independent.

I Alternatively, it is always possible to find a set of N vectors that
are independent.

I Once this set is chosen, any vector in this space can be
represented as the linear combination of the vectors in this set [?].

I This set of N independent vectors is by no means unique.

I An orthogonal set of vectors however becomes of great interest
when we are representing any system because it is easier to deal
with as compared to a non-orthogonal set.

I Finding an orthogonal set of vectors from any given set of vectors
is what is done by the Gram-Schmidt process.



Gram-Schmidt Process . . .

The projection of a vector x2 upon another vector x1 is c12x1, where

c12 =
x1.x2

|x1|2
x1 (12)

The error in this approximation is the vector x2 − c12x1, that is

Error vector = x2 −
x1.x2

|x1|2
x1 (13)

The error vector is orthogonal to vector x1.



Gram-Schmidt Process (2D)
In order to get insight in the process we consider a simple case of
2-dimnesional space. Let x1 and x2 be two independent vectors
2-dimensional space. If we want to generate a new set of two
orthogonal vectors y1 and y2 from x1 and x2. For convenience, we
choose,

y1 = x1 (14)

For finding another vector y2 that is orthogonal to y1 (and x1). Since
the error vector is orthogonal to y1 and can be taken as an
approximation for y2 i.e.

y2 = x2 −
x1.x2

|x1|2
x1

= x2 −
y1.x2

|y1|2
y1 (15)

Equations (14) and (15) yield the desired orthogonal set. This set is
not unique and an infinite number of orthogonal vector sets (y1,y2) can
be generated from (x1,x2).



Gram-Schmidt Process (N-Dimensional)

This result can be extended to an N-dimensional space. In general, if
we are given N independent vectors x1,x2, . . . ,xN , the by proceeding
along similar lines, we can obtain an orthogonal set y1,y2, . . . ,yN ,
where

y1 = x1

and

yj = xj −
j−1

∑
k=1

yk .xj

|yk |2
yk j = 2,3, . . . ,N (16)

This set generated is not orthonormal. To generate an orthonormal set
ŷ1, ŷ2, . . . , ŷN can be obtained by normalizing the lengths of the
respective vectors,

ŷk =
yk

|yk |



Pade Approximation, for system H(s)

Hp,q =
P(s)
Q(s)

=
a0 +a1 + · · ·+apsp

1+b1 + · · ·+bqsq (17)

H(s) =
∞

∑
k=0

mk sk limited to first (p+q+1) terms (18)

= m0 +m1s +m2s2 + · · ·+mp+qsp+q + r(s)sp+q+1 (19)

= Hp,q(s)+O(sp+q+1) (20)

a0 +a1 + · · ·+apsp = (1+b1 + · · ·+bqsq)

×
(
m0 +m1s +m2s2 + · · ·+mp+qsp+q + r(s)sp+q+1)



Deriving Moments from MNA Formulation

MẊ(t) = −GX(t)+PU(t) (21)

Y(t) = QX(t) (22)

Assuming that X(0) = 0, taking Laplace transform of above,

sMX(s) = −GX(s)+PU(s)

Y(s) = QX(s)

X(s) = (G + sM)−1 PU(s)

Y(s) = QX(s)

= Q (G + sM)−1 PU(s)

⇒ H(s) = Q (G + sM)−1 P



Deriving Moments from MNA Formulation ...

⇒ H(s) = Q (G + sM)−1 P

I Here, coefficients of Maclaurin expansion of H(s) are given by,

Mj = (−1)jQ
(
G−1M

)j
G−1P

I Computation of moments requires G to be invertible. This
requirement is easily satisfied by most interconnect circuits in
which each node has a DC path to the ground.



Deriving Moments from for RLC circuits
I Lets consider all entries in unknown vector X(s) as outputs, i.e.

Q is an identity matrix,

M0 = G−1PU

M1 = G−1MG−1P = G−1MM0

M2 =
(
G−1M

)2
G−1M = G−1MM1

· · ·

GM0 = PU

GM1 = MM0

GM2 = MM1

· · ·
GMi+1 = MMi



Deriving Moments from for RLC circuits ...

I Moments are to be evaluated iteratively,

I Matrix G, is admittance matrix of resistive tree derived from
original RLC tree, by removing all C and L. Solving GM0 = PU
implies obtaining DC solution, which is very straight-forward.

I Next, supposing Mi is given, lets compute Mi+1

I GMi+1 = MMi
I ⇒ tree remains same (as G if on LHS)
I Inputs are changed to MMi , M is interpretable BUT Mi needs

further interpretation



Deriving Moments from for RLC circuits ...

I M ≡
[

C 0
0 L

]
, as C imples KCL (currents through capacitors) &

L KVL (voltages across inductors)

I We partition MMi according to the composition of M

I MMi =

[
C 0
0 L

][
MiV

MiI

]
≡
[

IC
VL

]
I Entries in IC are related to product of capacitance and the i th

moment of voltage (MiV )

I Entries in VLare realted to product of inductance and the i th

moment of voltage (MiI)

I We generate NEW tree from OLD tree

I zeroing out oldl sources
I adding CURRENT sources and VOLTAGE sources at location of

capacitors and inductors of original tree

I The solution is now trivial



Asymptotic Waveform Evaluation

In their seminal 1990 paper [?], Pileggi and Rohrer used moments of
the transfer function as fidelity metrics, to be preserved by the model
reduction process. The moments mi of an LTI transfer function H(s)
are related to its derivatives, i.e.,

m1 =
dH(s)

ds

∣∣∣∣
s=s0

m2 =
d2H(s)

ds2

∣∣∣∣
s=s0

, . . . , (23)

AWE first computes a number of moments of the full system, and then
uses these in another set of linear equations, the solution of which
results in the reduced model. Such a procedure is termed explicit
moment matching.



AWE Approximation
AWE is most conveniently explained in general in terms of the
differential state equations for a lumped, linear, time-invariant circuit:

ẋ = Ax +Bu (24)

where x is the n-dimensional state vector and u is the m-dimensional
excitation vector. Suppose that the particular excitation is of the form

up(t) = u0 +u1t (25)

where u0 and u1 are constant m-dimensional vectors. In general the
form of up(t) need not be confined to such simple signals, but rather
could assume any form of input excitation for which a particular
solution can easily be obtained. Inputs that are polynomials in time or
sums of complex-valued exponentials can in theory be as easily
accommodated as the step/ramp combination in expression.
For the excitation up,(25), the differential-state equations(24) has the
particular solution

xp(t) = −A−1Bu0 −A−2Bu1 −A−1Bu1t (26)



AWE . . .

ẋh = Axh (27)

Now with the initial condition

xh(0) = x0 +A−1Bu0 +A−2Bu1 (28)

where x0 is the initial state at time zero. The Laplace transform solution of the
homogeneous equation is

Xh(s) = (sI −A)−1xh(0) (29)

To approximate this solution, Xh(s) is first expanded in a Maclaurin series

Xh(s) = −A−1(I +A−1s +A−2s2 + · · ·)xh(0) (30)

and as many moments as necessary or desirable are matched in terms of
lower order approximating functions. The justification for such a moment
matching approach follows from the Laplace transforms definition [?]. The
time moments are given by:

X(s) =

ˆ ∞

0
e−st x(t) dt =

∞

∑
k=0

1
k!

(−s)k
ˆ ∞

0
tk x(t) dt (31)



AWE . . .

The time moments are given by the power of t :

mk =
−1k

k!

ˆ ∞

0
tk x(t) dt (32)

depending upon the output needed we consider a specific component
of Xh(s),say the i th, its initial conditions and first 2q−1 moments that
are characterized as:

[m−1]i = [xh(0)]i
[m0]i =

[
−A−1xh(0)

]
i

[m1]i =
[
−A−2xh(0)

]
i

...
...

[m2q−2]i =
[
−A−2q+1xh(0)

]
i (33)

The rest of the process follows similar method as for MNA formulation
of RLC circuits.



AWE . . .

Now these moments are matched to a lower order frequency-domain
function of the form:

X̂i(s) =
k1

s−p1
+

k2

s−p2
+ · · ·+ kq

s−pq

=
q

∑
l=1

kl

s−pl
= −

q

∑
l=1

kl/pl

1− s/pl
(34)

where p1 through pq are the complex approximating poles and kl

through kq their appropriate residues. In other words, the time-domain
moments are to be matched to those of an approximating function of
the form

x̂i(t) =
q

∑
l=1

kle
pl t (35)



AWE . . .

Expanding each of the terms in (34) into a series about the origin, and upon
inclusion of the initial conditions, the following set of nonlinear simultaneous
equations for the i th state variable is obtained:

−(k1 + k2 + · · ·+ kq) = [m−1]i

−
(

k1

p1
+

k2

p2
+ · · ·+ kq

pq

)
= [m0]i

−
(

k1

p2
1

+
k2

p2
2

+ · · ·+ kq

p2
q

)
= [m1]i

...
...

−

(
k1

p2q−1
1

+
k2

p2q−1
2

+ · · ·+ kq

p2q−1
q

)
= [m2q−2]i (36)

A solution for the approximating poles and residues from this set of nonlinear
equations could proceed in terms of Newton-Raphson or a similar iteration
method.



AWE . . .

we reformulate the problem to allow for direct solution of the approximating poles and
residues. The set of equations in (36) can be summarized in matrix form as

−V k = [ml ]i (37)

and

V Λ−qk = [mh]i (38)

where ml , represents the low-order moments (−1,0, · · · ,q−2). mh represents the
high-order moments (q−1,q, · · · ,2q−2). Λ−1 is a diagonal matrix of the reciprocal
complex poles, and V is the well-known Vandermonde matrix:

1 1 1 1
p−1

1 p−1
2 · · · p−1

q
p−2

1 p−2
2 · · · p−2

q
...

...
...

p−q+1
1 p−q+1

2 · · · p−q+1
q

 (39)



AWE . . .
It follows then from (37) that

k = −V −1ml (40)

V Λ−qV −1ml = mh (41)

Since the Vandermonde matrix is the modal matrix for a system matrix in companion
form, (41) is equivalent to:

A−q
c ml = mh (42)

where

A−1
c =


0 1 0 . 0
0 0 1 · · · 0
...

...
...

...
−a0 −a1 −a2 · · · −aq−1

 (43)

with the coefficients normalized so that aq = 1. This matrix is characterized as A−1
c

rather than Ac , because its eigenvalues are the reciprocals of the approximating poles
for the original system (24).



AWE . . .

The set of simultaneous nonlinear equations (42) for the coefficients
a0, through aq−1,ac can be written recursively to yield the following set
of linear equations:

m−1 m0 · · · mq−2

m0 m1 · · · mq−1
...

...
...

mq−2 mq−1 · · · m2q−3




−a0

−a1
...

−aq−1

=


mq−1

mq
...

m2q−2

 (44)

It is in terms of ac , we can form a characteristic polynomial

a0 +a1p−1 +a2p−2 + · · ·+aq−1p−q+1 +p−q = 0 (45)



Krylov Subspace Approach

Computing the k th moment explicitly involves evaluating terms of the form
A−k r ,i.e., the k th member of the Krylov subspace of A and r . If A has well
separated eigenvalues (as it typically does for circuit matrices), then for
k ' 10 and above, only the dominant eigenvalue contributes to these terms,
with non-dominant ones receding into numerical insignificance.
Krylov-subspace methods are best viewed as reducing the system via
projection. They produce two projection matrices, V ∈ Rn×q and W T ∈ Rq×n,
such that the reduced system is obtained as

W T E︸ ︷︷ ︸
Ê

ẋ = W T AV︸ ︷︷ ︸
Â

x(t)+W T B︸ ︷︷ ︸
B̂

u(t)

y(t) = CT V︸︷︷︸
ĈT

x(t)+Du(t) (46)

For the reduction to be practically meaningful, q, the size of the reduced
system, must be much smaller than n, the size of the original. If the Lanczos
process is used, then W T V ≈ I(i.e., the two projection bases are
bi-orthogonal). If the Arnoldi process is applied, then W = V and W T V = I.



Padé via the Lanczos (PVL) Algorithm

I Limitations of AWE

I AWE computes with relatively a small no. of poles
I Less accurate reduced order model H(s) improves only up to a

small value of q

I Improvements in PVL

I Arbitrary number of poles and zeros are used
I Computational cost similar to AWE



PVL . . .

Definition 1-Krylov Subspace: The Krylov subspace Km(A,p) generated
by a matrix A and vector p, of order m, is the space spanned by the set of
vectors

{
p,Ap,A2p, . . . ,Am−1p

}
.

I A basis for a Krylov subspace can be quickly computed if A can be
rapidly applied to p, e.g. due to sparsity. This fact gives Krylov-based
model reduction the potential for cost and savings. Extremely simple [?]
but not particularly effective choices for V and W are

colsp V (s) = KM((A− sE),B)

= span
{

B,(A− sE)B, . . . ,(A− sE)M−1B
}

(47)

colsp W (s) = KM((A− sE)T ,C)

= span
{

C,(A− sE)T C, . . . ,((A− sE)T )M−1C
}

(48)

I The essential elements of Krylov-subspace-based reduction are given
by Suppose Km(A−1,p) ⊂ colspan(V ), then
V (V T AV )−k V T B = VÂ−k b = A−k b, for k < m.



PVL . . .
The algorithm of Lanczos computes rectangular matrices V and
W ∈ RN×M that restrict a specified matrix G to a tridiagonal form,

S = W T GV =


α1 β2 0 · · ·

γ2 α2
. . . . . .

0
. . . . . . βM

0 · · · γM αM


and that satisfy

colsp{V} ∈ KM(G, v̂1) and colsp{W} ∈ KM(GT , ŵ1) (49)

The vectors v̂1 and ŵ1 are user-specified starting vectors which lie in
the direction of the first column of V and W . Alternatively and
equivalently, the Lanczos method can be viewed as an approach for
constructing biorthogonal V and W , i.e., W T V = I, that satisfy the
same Krylov subspace conditions (49).



PVL: Basic algorithm layout

I System of equations & transfer function, defined by

Cẋ = −Gx +bu y = lT x

H(s) = lT (G + sC)−1b

I Using s0 as an arbitrary expansion point the modified transfer
function is

H(s0 +σ) = lT (I − sA)−1r



PVL . . .

I The reduced order transfer generated by PVL:

I The Taylor coefficients necessary for the Padé approximant Hq

result from the following expansion of H(s) about s0:

H(s0 +σ) = lT (I +σA+σ2A2 + · · ·)r =
∞

∑
k=0

mk σk ,

where

mk = lT Ak r , k = 0,1, . . . (50)

Hq(s0 +σ) =
q

∑
j=1

lT r .µjνj

1−σλj



PVL: Basic algorithm layout . . .

Run q steps of the Lanczos Algorithm to obtain the tridiagonal matrix
Tq

I Compute ρn = ||v ||2 and ηn = ||w ||2.
If ρn = 0 or ηn = 0, then stop.

I Set

vn =
v
ρn

, wn =
w
ηn

,

δn = wT
n vn, αn =

wT
n Avn

δn
,

βn = ηn
δn

δn−1
, γn = ρn

δn

δn−1
,

v = Avn − vnαn − vn−1βn

w = AT wn −wnαn −wn−1γn



PVL: Basic algorithm layout . . .

Matrix Tq is given by

Tq =


α1 β2 · · · 0

ρ2 α2
. . .

...
...

. . . . . . βq

0 · · · ρq αq


Compute the eigen decomposition of the matrix Tq and set:

Tq = Sq diag(λ1,λ2, . . . ,λq)S
−1
q

µ = ST
q e1 and ν = S−1

q e1.
Compute poles and residues by setting:

pj = 1/λj and kj =
lT r .µjνj

λj
for all j = 1,2, . . . ,q



Arnoldi Approach

Arnoldi algorithm is a better conditioned process that direct evaluation
of the moments because it generates an orthogonal set of vectors
which span Ak b, for k = 0,1, . . . ,2q−1.
Restating the system of equations for the linear system used in the
Arnoldi method as input can be written as:

ẋ = Ax +bu(t) (51)

y = cT x (52)

The Arnoldi method is based on the following “Arnoldi algorithm" which
has 3 inputs:
A, an N by N matrix; b ∈ RN ; and an integer q, which will be the size
chosen for the reduced system and usually q � N
and will generate 3 outputs:
V , an N by q matrix; H, an q by q matrix; and vq+1 ∈ Rq which will
satisfy the following 3 properties:



Arnoldi . . .

Property
V is an column-orthonormal matrix; its q columns form a set of
orthonormal vectors in RN ;

AV = VH +hvq+1eT
q (53)

where h is a scalar and the eq is the qth standard unit vector in Rq

Ak b = ||b||VHk e1 (54)

where k = 0, · · · ,q−1 and ||.|| is the 2-norm.
The Arnoldi algorithm [?] is actually a modified Gram-Schmidt process
for the Krylov subspace K (A,b) = span{b,Ab,A2b, · · · ,Aq−1b} with
the orthogonalized q vectors v1, · · · ,vq constitute of the q columns of
the matrix V as described below: First form unit vector v1 = b/||b||



Arnoldi . . .

I Trade off between optimality to gain guaranteed stability

I It is a modified Gram-Schmidt process

I Arnoldi process creates two matrices Vq and Hq satisfying

AV = VH +hq+1,qvq+1eT
q

I For the moment Ak b of the system to match

Ak b = ||b||Ak Vqe1 = ||b||VqHk
q e1

mk = cT Ak b = ||b||cT Vq︸ ︷︷ ︸
cT

q

Hk
q︸︷︷︸

Ak
q

e1︸︷︷︸
bq

I Requiring the state space realization of system to be A

Aq = Hq bq = e1 cq = ‖b‖V T
q c

I we get

Hż = z +V T bu(t) (55)

y = cT Vz (56)



Arnoldi Approach: Basic algorithm layout . . .

v1 = b/||b||
for j = 1 : q
{w = Avj

for i = 1 : j
{hi,j = wT vi

w = w −hi,jvi}
hj+1,j = ||w ||
if (hj+1,j 6= 0)

vj+1 = w/hj+1,j}



Jacobi-Davidson Method

The time domain formulation of any system is given by as follows:{
C dx(t)

dt +Gx(t) = u(t),
x(0) = 0

(57)

where x ∈ Rn contains the circuit state, C ∈ Rn×n is the capacitance
matrix, G ∈ Rn×n is the conductance matrix and u(t) models the
excitation.



Jacobi-Davidson Method . . .

Because all the properties cannot be computed in time-domain, the problem is
formulated in frequency-domain by applying the Laplace transforms:

(sC +G)X (s) = U(s), (58)

where X ,U are the Laplace-transform of the variable x ,u and s is the variable in the
frequency domain. The transfer function of the circuit is given by:

H (s) = (sC +G)−1 (59)

The poles are the values pk ∈ C that satisfy det(pk C +G) = 0, hence
(G +pk C)x = 0, for some x 6= 0, which leads to the eigenvalue problem (λ = −pk ):

Gx = λCx , x 6= 0 (60)

The problem of computing zeros is similar to that of computing poles. Especially for
large circuits (n > 104), robust, iterative methods for the generalized eigenvalue
problem with sufficient accuracy and acceptable computational cost are needed.
The Jacobi-Davidson method is one of the approaches which like Arnoldi method
does separate pole-zero computation while the approaches like AWE and PVL do
combined pole-zero computation.



Application of algorithms for linear circuits



Results: AWE with reduced order =5 for a line with 25
elements
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Results: PVL with reduced order =5−25 for a line with 100
elements
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Results: Arnoldi with reduced order =5−25 for a line with
100 elements
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Comparison of model generation time



Comparing model simulation time
I Circuit simulation (SPICE) time = 3.36 sec



Results: Jacobi-Davidson with reduced order =6−16 for a
line with 100 elements
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Conclusions

I Model Order Reduction is very attarctive for CAD-synthesis &
automated verification

I The linear model order reduction have been reported in literature from
around a decade and the techniques AWE, PVL and Arnoldi are already
too matured to be improved in any direction

I but still the main drawback that leaves the applicability of these
algorithm a bit difficult as faced by us during this work was the
generation of the state-space matrix in general for very large
asymmetric circuits.

I The improvement in the linear algorithms would come only when we try
and suggest any of the newer methods like we did an attempt to bring
Jacobi-Davidson method; the simulation is expected to be improved
with its two variations JDQR and JDQZ.

I The methods for weakly nonlinear systems have also been investigated
by us as reported in lieterature in recent past
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