Reduced Order Modeling

: Linear VLSI Systems

Vineet Sahula, sahula@ieee.org

Short Term course on
Mathematical Methods and its Applications in Engg \& Sc. $29^{\text {th }}$ Oct. - $3^{\text {rd }}$ Nov 2012
Malaviya National Institute of Technology, Jaipur

Outline

1. Motivation
2. Linear Time invariant system
3. Review
3.1 Moments of a transfer function
3.2 Padé approximation
3.3 Iterative method of Eigen value computation
3.4 QR method for Eigen value computation
4. Review of few algebraic conepts
4.1 Basis of Vector Spaces; Gram-Schmidt process of Orthogonalization
4.2 Modified Nodal Analysis- RLC circuits
5. Model order reduction approaches

Explicit moments matching
5.1 Asymtotic Waveform evaluation

Projection based approaches
5.1 Padé via Lanczos
5.2 Arnoldi method
5.3 Jacobi-Davidson method
6. Results
7. Conclusions

Physical System Classification

Figure: Complexity vs Size of physical systems

Reduced Order Modeling- Why \& How?

- VLSI Systems today are more complex

Issue Verification of such systems post-fabrication is challenging

- size \& complexity

Approach Automated model generation for efficient verification Model Order Reduction An idead in CAD

- for replacing the original large scale systems with much smaller one
- yet retains behavioral accuracy

Design Space exploration is much easier now as we need to simulate reduced samll system

Model Order reduction

- Indispensable tool for numerous areas- VLSI interconects, MEMS (micro-electro-mechanical systems)
- Nevertheless, the concept is general enough to be applicable to other areas
- Model Order Reduction is very intersting and meaningful mathematical problem in its own right
- Objectives
- Model-based approach that propagates circuit performance characteristics in a bottom-up manner
- Accuracy of models must be predictable and controllable
- Model reduction implies automatic generation of the macro models by operation on the detailed descriptions
- Reduction exploits information about internal structure of the system
- More effective control on error is possible
- Influence of complicated second-order physical effects included at system level

Linear Time Invariant (LTI) Systems

Figure: Linear Time Invariant block

Formulation of an LTI

Applying MNA to the RLC interconnect model

$$
\left[\begin{array}{ll}
C & 0 \\
0 & L
\end{array}\right]\left[\begin{array}{c}
\dot{v} \\
\dot{i}
\end{array}\right]=-\left[\begin{array}{cc}
G & B \\
-B^{T} & 0
\end{array}\right]\left[\begin{array}{l}
v \\
i
\end{array}\right]+\left[\begin{array}{c}
i_{s} \\
0
\end{array}\right]
$$

The equation can be simplified as

$$
\begin{aligned}
\mathcal{L} \dot{x} & =-\mathcal{R} x+e_{j} u \\
y & =e_{k}^{T} x \\
A \dot{x} & =x+b u \\
y & =c^{T} x
\end{aligned}
$$

Formulation of LTI ...

The transfer function of the system is

$$
z_{j k}(s)=\frac{y(s)}{u(s)}=-c^{T}(I-s A)^{-1} b
$$

Reduced order model that the algorithm is expected to generate

$$
\begin{aligned}
A_{q} \dot{x}_{q} & =x_{q}+b_{q} u \\
\tilde{y} & =c_{q}^{T} x_{q}
\end{aligned}
$$

Such that the reduced order transfer function

$$
\tilde{Z}_{j k}(s)=\frac{\tilde{y}(s)}{u(s)}=-c_{q}^{T}\left(I-s A_{q}\right)^{-1} b_{q}
$$

matches $Z_{j k}$ with sufficient accuracy

s Domain Analysis

1. Moments
1.1 In case of input being $\delta(t)$, the response at ouput port is the transfer function itself; since Laplace tramsform of impulse function is UNITY
1.2 Moments of impulse response $h(t)$ are coefficients of powers of s in Maclaurin expansion of transfer function $H(s)$
$1.3 \quad H(s)=\sum_{k=0}^{\infty} m_{k} s^{k}$
$1.4 \quad m_{k}=\frac{1}{k!} \times\left.\frac{\mathrm{d}^{k} H(s)}{\mathrm{d} s^{k}}\right|_{s=0}$

Characteristic of Impulse Response

$$
\begin{align*}
H(s) & =\int_{0}^{\infty} H(t) e^{-s t} \mathrm{~d} t \tag{3}\\
& =\int_{0}^{\infty} H(t)\left(1-s t+s^{2} \frac{t^{2}}{2}+\cdots+s^{k} \frac{(-1)^{k} t^{k}}{k!}+\cdots\right) \mathrm{d} t \tag{4}\\
& ==\int_{0}^{\infty} \sum_{k=0}^{\infty} s^{k} \frac{(-1)^{k} t^{k}}{k!} H(t) \mathrm{d} t \tag{5}\\
& =\sum_{k=0}^{\infty} s^{k} \frac{(-1)^{k}}{k!} \int_{0}^{\infty} t^{k} H(t) \mathrm{d} t \tag{6}
\end{align*}
$$

Moments

- Comparing 1 and 6,

$$
\begin{align*}
& m_{k}=\frac{(-1)^{k}}{k!} \int_{0}^{\infty} t^{k} H(t) \mathrm{d} t \tag{7}\\
& m_{0}=\int_{0}^{\infty} H(t) \mathrm{d} t \tag{8}\\
& m_{1}=-\int_{0}^{\infty} t H(t) \mathrm{d} t \tag{9}
\end{align*}
$$

Padé approximation

- Representing a function $f(x)$ as quotient of two polynomials, $R_{N}(x)-$

$$
\begin{align*}
f(x) & =R_{N}(x)=\frac{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}}{1+b_{1} x+b_{2} x^{2}+\ldots+b_{m} x^{m}} \\
f(x)-R_{N}(x) & =\left(c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{N} x^{N}\right) \\
& -\frac{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}}{1+b_{1} x+b_{2} x^{2}+\ldots+b_{m} x^{m}} \tag{11}
\end{align*}
$$

- The no. of constants in R_{N} is $n+m+1$, and in $f(x)$ is $N+1$;
- Also, here cooefficients c_{i} are $f^{(i)}(0) /(i!)$ of Maclaurin's series,
- The first N derivatives of $f(x)$ and $R_{N}(x)$ have to be equal at $x=0$
- The coefficients of the powers of x up to and including x^{N} in numerator ust all be zero.

Padé approximation ...

- Generate coefficients of rational functions (ratio of polynomials) that are much more efficient;
- If $f(x)=R_{N}(x)$ at $x=0$, the numerator must have no constatn term. Hence, $c_{0}-a_{0}=0$.
- For first N derivatives of $f(x)$ and $R_{N}(x)$ to be equal at $x=0$, the coefficients of powers of x up to and including x^{N} in the numerator must all be zero also.

$$
\begin{aligned}
& b_{1} c_{0}+c_{1}-a_{1}=0 \\
& b_{2} c_{0}+b_{1} c_{1}+c_{2}-a_{2}=0 \\
& b_{3} c_{0}+b_{2} c_{1}+b_{1} c_{2}+c_{3}-a_{3}=0 \\
& \vdots \vdots \\
& \vdots \\
& b_{m} c_{0}+b_{m-1} c_{1}+b_{m-2} c_{2}+\ldots c_{m}-a_{m}=0 \\
& \vdots \vdots \\
& \vdots \\
& b_{m} c_{n-m}+b_{m-1} c_{1}+b_{m-2} c_{2}+\ldots+c_{n}-a_{n}=0 \\
& b_{m} c_{n-m+1}+b_{m-1} c_{n-m+2}+b_{m-2} c_{n-m+3}+\ldots+c_{n+1}=0 \\
& \vdots \vdots \\
& b_{m} c_{N-m}+b_{m-1} c_{N-m+1}+b_{m-2} c_{N-m+2}+\ldots+c_{N}=0
\end{aligned}
$$

Eigen Value computation

- Eigen Values \& vector
- $\mathbf{A x}=\lambda \mathbf{x} \quad \Rightarrow \quad(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$
- Two matrices \mathbf{A} and \mathbf{B} are said to be similar, while \mathbf{T} is non-singular
- $\mathbf{A}=T B T^{-1} \quad \Rightarrow \quad \mathbf{B}=\mathbf{T}^{-1} \mathbf{A} \mathbf{T}$
- Similarity matrices have identical Eigen values
- replacing \mathbf{A} : $\mathbf{T B T}^{-1} \mathbf{x}=\lambda \mathbf{x}$
- $\mathbf{B T}^{-1} \mathbf{x}=\lambda \mathbf{T}^{-1} \mathbf{x}$
- Hence \mathbf{A} and \mathbf{B} have identical Eigen values, i.e. λ

QR Method for Eigen value computation

- Let a tri-diagonal matrix $A=Q R$ be broken into two matrics, where Q is orthogonal, and R is upper triangular
- And, further B is formed with $B=R Q$
- Here, $R=Q^{T} A$, hence $B=Q^{\top} A Q$ and is similar to A

The $Q R$ process is iterative, we obtain a sequence of matrices A_{i}, where as $i \rightarrow \infty A_{i}$ tends to be a diagonal (block diagonal with max size 2×2)

Vector Space

- Let \mathcal{F} be a field and V be an abelian addititve group such that there is a scalr multiplication of V by \mathcal{F}, which associates with each $s \in \mathcal{F}$ and $\xi \in V$ the element $s \xi \in V$. Then V is called a vector space over \mathcal{F} provided, with u the unity of \mathcal{F}, following holds
- $s(\xi+\eta)=s \xi+s \eta \quad(s+t) \xi=s \xi+t \xi \quad s(t \xi)=(s t) \xi$ $u \xi=\xi$
- Sub space-
- A non empty U of a vector space V over \mathcal{F} is a subspace of V provided U is itself a vector space over \mathcal{F}.

Vector Sub-space

Theorem A non-empty subset U of a vector space V over \mathcal{F} is a subspace of V iff U is closed wrt scalar multiplication and vector addition as defined on V.
Theorem The set U of all linear combinations of an arbitrary set S of vectors $\left(2^{|S|}\right)$ of a space V is a sub space of V.

- In turn vectors of S area called generators of the space U.
- Let $U=\left\{k_{1} \xi_{1}+k_{2} \xi_{2}+\cdots k_{m} \xi_{m}: k_{i} \in F\right\}$ be the space spanned by $S=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ a subset of vectors of V over \mathcal{F}
- It remains to find minimum set of vectors necessary to span a given space U
- as any ξ_{j} if can be written as combination of other vectors of S, then ξ_{j} may be excluded from S, and remaining vectors will still span U.

Linear Dependence

- $\sum k_{i} \xi_{i}=k_{1} \xi_{1}+k_{2} \xi_{2}+\cdots k_{m} \xi_{m}=\zeta$
- A non-empty subset S of a vector space V over \mathcal{F} is called linearly dependent over \mathcal{F} iff there exists
$k_{1}, k_{2}, \cdots k_{m} \in \mathcal{F}: \exists k_{i} \neq z$
- A non-empty subset S of a vector space V over \mathcal{F} is called linearly independent over \mathcal{F} iff there exists
$k_{1}, k_{2}, \cdots k_{m} \in \mathcal{F}:$ every $k_{i}=z$
Theorem If some one of the set $S=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ of vectors in V over \mathcal{F} is zero vecor ζ, then necessarily S is a linearly depdent set.
Theorem A set of non-zero vectors S of V over \mathcal{F} is also linearly dependent iff some one of ξ_{j} can be expressed as linear combination of the vectors $\xi_{1}, \xi_{2}, \ldots, \xi_{j-1}$, which precedes it.
Theorem Any finite set S of vectors, not all the zero vector, contains a linearly indepdendent subset U which spans the same vector space as S.

Bases of a Vector Space

- A set $S=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ of vectors of a vector space V over \mathcal{F} is called a basis of V provided

1. S is linearly independent set,
2. the vectors of S span V

- Let's define unit vectors of $V_{n}(\mathcal{F})$

$$
\begin{aligned}
\varepsilon_{1} & =(u, 0,0,0, \ldots, 0,0) \\
\varepsilon_{2} & =(0, u, 0,0, \ldots, 0,0) \\
\vdots & \vdots \\
\varepsilon_{n} & =(0,0,0,0, \ldots, 0, u)
\end{aligned}
$$

- and consider linear combination,

$$
\xi=a_{1} \varepsilon_{1}+a_{2} \varepsilon_{2}+\cdots a_{n} \varepsilon_{n}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad a_{i} \in \mathcal{F}
$$

- If $\xi=\zeta$, then $a_{1},=a=\ldots=a_{n}=z$; and hence $E=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$ is a linearly independent set.

Bases of a Vector Space

Theorem If $S=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ is a basis of the vector space V over \mathcal{F} and $T=\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right\}$ is any linearly independent set of vectors of V, then $n \leqslant m$.
Theorem As a consequence, if If $S=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ is a basis of the vector space V over \mathcal{F}, then any $m+1$ vectors of V necessarily form a linearly dependent set.
Theorem Every basis of a vector space V over \mathcal{F} has the same number of elements. This number is called dimension of v.

Sub-spaces of a vector

- Let V, of dimension n, be a vector space over \mathcal{F} and U, of dimension $n<m$ having $B=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ as basis, be a sub-space of V. Then, only m of the unit vectors of V can be written as linear combination of elements of B; hence there exist vectors of V which are not in U.
- $k_{1} \xi_{1}+k_{2} \xi_{2}+\cdots+k_{m} \xi_{m}+k \eta_{1}=\zeta \quad \forall k_{i}, k \in F$
- now $k=z$ since otherwise $k^{-1} \in F$, and $\eta_{1}=k^{-1}\left(-k_{1} \xi_{1}-k_{2} \xi_{2}-\cdots-k_{m} \xi_{m}\right)$, and $\eta_{1} \in U$, which is contrary to definition of η_{1}, hence PROVED.

Theorem If $B=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$ is basis of $U \subset V, V$ having dimension n, there exist vectors $\eta_{1}, \eta_{2}, \ldots, \eta_{n-m}$ in V such that $B \cup\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{n-m}\right\}$ is basis of V.
Theorem If, in $V_{n}(R)$, a vector η is orthogonal to each vector of the set $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$, then η is orthogonal to every vector of the space spanned by this set.

Vector Spaces over R

- Let's focus on to vector space $V=V_{n}(R)$ over R.
- for 2-dimensional vetors, $\xi=\left(a_{1}, a_{2}\right)$ and

$$
\eta=\left(b_{1}, b_{2}\right) \cos \theta=\frac{a_{1} b_{1}+a_{2} b_{2}}{|\xi| \cdot|\eta|}
$$

- Hence, inner product is defined as, $\xi \cdot \eta=a_{1} b_{1}+a_{2} b_{2}$
- For n-dimensional $V_{n}(R)$, for all $\xi=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and

$$
\begin{aligned}
\eta & =\left(b_{1}, b_{2}, \ldots, b_{n}\right) \\
& \bullet \xi \cdot \eta=\sum a_{i} b_{i}
\end{aligned}
$$

- Suppose in $V_{n}(R)$, a vector η is orthogonal to each vector of the set $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$, then η is orthogonal to every vector of the space spanned by this set.

Orthogonal \& Orthonormal Bases

- Two vectors u and v are orthogonal, if their inner product $\langle u, v\rangle=0$
- The set of vectors $\left\{u_{i}\right\}$ in V are orthonormal, if they are orthogonal among themselves $\left\langle u_{i}, u_{j}\right\rangle=0$ for any $i \neq j$, and each of u_{i} has length 1 .
- When $\left\{u_{i}\right\}$ is a basis of V, then it is orthonormal basis of V

Gram-Schmidt Process (Orthogonalization)

- In an N-dimensional space, there can be no more than N vectors that are independent.
- Alternatively, it is always possible to find a set of N vectors that are independent.
- Once this set is chosen, any vector in this space can be represented as the linear combination of the vectors in this set [?].
- This set of N independent vectors is by no means unique.
- An orthogonal set of vectors however becomes of great interest when we are representing any system because it is easier to deal with as compared to a non-orthogonal set.
- Finding an orthogonal set of vectors from any given set of vectors is what is done by the Gram-Schmidt process.

Gram-Schmidt Process ...

The projection of a vector x_{2} upon another vector x_{1} is $c_{12} x_{1}$, where

$$
\begin{equation*}
c_{12}=\frac{x_{1} \cdot x_{2}}{\left|x_{1}\right|^{2}} x_{1} \tag{12}
\end{equation*}
$$

The error in this approximation is the vector $x_{2}-c_{12} x_{1}$, that is

$$
\begin{equation*}
\text { Error vector }=x_{2}-\frac{x_{1} \cdot x_{2}}{\left|x_{1}\right|^{2}} x_{1} \tag{13}
\end{equation*}
$$

The error vector is orthogonal to vector x_{1}.

Gram-Schmidt Process (2D)

In order to get insight in the process we consider a simple case of 2-dimnesional space. Let x_{1} and x_{2} be two independent vectors 2-dimensional space. If we want to generate a new set of two orthogonal vectors y_{1} and y_{2} from x_{1} and x_{2}. For convenience, we choose,

$$
\begin{equation*}
y_{1}=x_{1} \tag{14}
\end{equation*}
$$

For finding another vector y_{2} that is orthogonal to y_{1} (and x_{1}). Since the error vector is orthogonal to y_{1} and can be taken as an approximation for y_{2} i.e.

$$
\begin{align*}
y_{2} & =x_{2}-\frac{x_{1} \cdot x_{2}}{\left|x_{1}\right|^{2}} x_{1} \\
& =x_{2}-\frac{y_{1} \cdot x_{2}}{\left|y_{1}\right|^{2}} y_{1} \tag{15}
\end{align*}
$$

Equations (14) and (15) yield the desired orthogonal set. This set is not unique and an infinite number of orthogonal vector sets (y_{1}, y_{2}) can be generated from $\left(x_{1}, x_{2}\right)$.

Gram-Schmidt Process (N-Dimensional)

This result can be extended to an N -dimensional space. In general, if we are given N independent vectors $x_{1}, x_{2}, \ldots, x_{N}$, the by proceeding along similar lines, we can obtain an orthogonal set $y_{1}, y_{2}, \ldots, y_{N}$, where

$$
y_{1}=x_{1}
$$

and

$$
\begin{equation*}
y_{j}=x_{j}-\sum_{k=1}^{j-1} \frac{y_{k} \cdot x_{j}}{\left|y_{k}\right|^{2}} y_{k} \quad j=2,3, \ldots, N \tag{16}
\end{equation*}
$$

This set generated is not orthonormal. To generate an orthonormal set $\hat{y}_{1}, \hat{y}_{2}, \ldots, \hat{y}_{N}$ can be obtained by normalizing the lengths of the respective vectors,

$$
\hat{y}_{k}=\frac{y_{k}}{\left|y_{k}\right|}
$$

Pade Approximation, for system $H(s)$

$$
\begin{align*}
H_{p, q} & =\frac{P(s)}{Q(s)}=\frac{a_{0}+a_{1}+\cdots+a_{p} s^{p}}{1+b_{1}+\cdots+b_{q} s^{q}} \tag{17}\\
H(s) & =\sum_{k=0}^{\infty} m_{k} s^{k} \text { limited to first }(\mathrm{p}+\mathrm{q}+1) \text { terms } \tag{18}\\
& =m_{0}+m_{1} s+m_{2} s^{2}+\cdots+m_{p+q} s^{p+q}+r(s) s^{p+q+1} \tag{19}\\
& =H_{p, q}(s)+O\left(s^{p+q+1}\right) \tag{20}
\end{align*}
$$

$$
\begin{aligned}
a_{0}+a_{1}+\cdots+a_{p} s^{p} & =\left(1+b_{1}+\cdots+b_{q} s^{q}\right) \\
& \times\left(m_{0}+m_{1} s+m_{2} s^{2}+\cdots+m_{p+q} s^{p+q}+r(s) s^{p+q+1}\right)
\end{aligned}
$$

Deriving Moments from MNA Formulation

$$
\begin{align*}
M \dot{\mathbf{X}}(t) & =-G \mathbf{X}(t)+P \mathbf{U}(t) \tag{21}\\
\mathbf{Y}(t) & =Q \mathbf{X}(t) \tag{22}
\end{align*}
$$

Assuming that $\mathbf{X}(0)=0$, taking Laplace transform of above,

$$
\begin{aligned}
s M \mathbf{X}(s) & =-G \mathbf{X}(s)+P \mathbf{U}(s) \\
\mathbf{Y}(s) & =Q \mathbf{X}(s)
\end{aligned}
$$

$$
\mathbf{X}(s)=(G+s M)^{-1} P \mathbf{U}(s)
$$

$$
\mathbf{Y}(s)=Q \mathbf{X}(s)
$$

$$
=Q(G+s M)^{-1} P \mathrm{P}(s)
$$

$$
\Rightarrow H(s)=Q(G+s M)^{-1} P
$$

Deriving Moments from MNA Formulation ...

$$
\Rightarrow H(s)=Q(G+s M)^{-1} P
$$

- Here, coefficients of Maclaurin expansion of $H(s)$ are given by,

$$
M_{j}=(-1)^{j} Q\left(G^{-1} M\right)^{j} G^{-1} P
$$

- Computation of moments requires G to be invertible. This requirement is easily satisfied by most interconnect circuits in which each node has a DC path to the ground.

Deriving Moments from for RLC circuits

- Lets consider all entries in unknown vector $\mathbf{X}(s)$ as outputs, i.e. Q is an identity matrix,

$$
\begin{aligned}
& \mathbf{M}_{0}=G^{-1} P U \\
& \mathbf{M}_{1}=G^{-1} M G^{-1} P=G^{-1} M \mathbf{M}_{0} \\
& \mathbf{M}_{2}=\left(G^{-1} M\right)^{2} G^{-1} M=G^{-1} M \mathbf{M}_{1}
\end{aligned}
$$

$$
G M_{0}=P U
$$

$$
G \mathbf{M}_{1}=M \mathbf{M}_{0}
$$

$$
G \mathbf{M}_{2}=M \mathbf{M}_{1}
$$

$$
G \mathbf{M}_{i+1}=M \mathbf{M}_{i}
$$

Deriving Moments from for RLC circuits ...

- Moments are to be evaluated iteratively,
- Matrix G, is admittance matrix of resistive tree derived from original RLC tree, by removing all C and L. Solving $G M_{0}=P U$ implies obtaining DC solution, which is very straight-forward.
- Next, supposing \mathbf{M}_{i} is given, lets compute \mathbf{M}_{i+1}
- $\mathbf{G M}_{i+1}=\mathbf{M M}_{i}$
- \Rightarrow tree remains same (as G if on LHS)
- Inputs are changed to $M \mathbf{M}_{i}, M$ is interpretable BUT \mathbf{M}_{i} needs further interpretation

Deriving Moments from for RLC circuits ...

- $M \equiv\left[\begin{array}{ll}C & 0 \\ 0 & L\end{array}\right]$, as C imples KCL (currents through capacitors) \&

L KVL (voltages across inductors)

- We partition M_{i} according to the composition of M
- $M \mathbf{M}_{i}=\left[\begin{array}{ll}C & 0 \\ 0 & L\end{array}\right]\left[\begin{array}{c}M_{i V} \\ M_{i l}\end{array}\right] \equiv\left[\begin{array}{c}I_{C} \\ V_{L}\end{array}\right]$
- Entries in I_{C} are related to product of capacitance and the $i^{\text {th }}$ moment of voltage ($M_{i v}$)
- Entries in V_{L} are realted to product of inductance and the $i^{\text {th }}$ moment of voltage ($M_{i l}$)
- We generate NEW tree from OLD tree
- zeroing out oldl sources
- adding CURRENT sources and VOLTAGE sources at location of capacitors and inductors of original tree
- The solution is now trivial

Asymptotic Waveform Evaluation

In their seminal 1990 paper [?], Pileggi and Rohrer used moments of the transfer function as fidelity metrics, to be preserved by the model reduction process. The moments m_{i} of an LTI transfer function $H(s)$ are related to its derivatives, i.e.,

$$
\begin{equation*}
m_{1}=\left.\frac{d H(s)}{d s}\right|_{s=s_{0}} \quad m_{2}=\left.\frac{d^{2} H(s)}{d s^{2}}\right|_{s=s_{0}}, \ldots \tag{23}
\end{equation*}
$$

AWE first computes a number of moments of the full system, and then uses these in another set of linear equations, the solution of which results in the reduced model. Such a procedure is termed explicit moment matching.

AWE Approximation

AWE is most conveniently explained in general in terms of the differential state equations for a lumped, linear, time-invariant circuit:

$$
\begin{equation*}
\dot{x}=A x+B u \tag{24}
\end{equation*}
$$

where x is the n-dimensional state vector and u is the m-dimensional excitation vector. Suppose that the particular excitation is of the form

$$
\begin{equation*}
u_{p}(t)=u_{0}+u_{1} t \tag{25}
\end{equation*}
$$

where u_{0} and u_{1} are constant m-dimensional vectors. In general the form of $u_{p}(t)$ need not be confined to such simple signals, but rather could assume any form of input excitation for which a particular solution can easily be obtained. Inputs that are polynomials in time or sums of complex-valued exponentials can in theory be as easily accommodated as the step/ramp combination in expression.
For the excitation u_{p},(25), the differential-state equations(24) has the particular solution

$$
\begin{equation*}
x_{p}(t)=-A^{-1} B u_{0}-A^{-2} B u_{1}-A^{-1} B u_{1} t \tag{26}
\end{equation*}
$$

AWE ...

$$
\begin{equation*}
\dot{x}_{h}=A x_{h} \tag{27}
\end{equation*}
$$

Now with the initial condition

$$
\begin{equation*}
x_{h}(0)=x_{0}+A^{-1} B u_{0}+A^{-2} B u_{1} \tag{28}
\end{equation*}
$$

where x_{0} is the initial state at time zero. The Laplace transform solution of the homogeneous equation is

$$
\begin{equation*}
X_{h}(s)=(s I-A)^{-1} x_{h}(0) \tag{29}
\end{equation*}
$$

To approximate this solution, $X_{h}(s)$ is first expanded in a Maclaurin series

$$
\begin{equation*}
X_{h}(s)=-A^{-1}\left(I+A^{-1} s+A^{-2} s^{2}+\cdots\right) x_{h}(0) \tag{30}
\end{equation*}
$$

and as many moments as necessary or desirable are matched in terms of lower order approximating functions. The justification for such a moment matching approach follows from the Laplace transforms definition [?]. The time moments are given by:

$$
\begin{equation*}
X(s)=\int_{0}^{\infty} e^{-s t} x(t) d t=\sum_{k=0}^{\infty} \frac{1}{k!}(-s)^{k} \int_{0}^{\infty} t^{k} x(t) d t \tag{31}
\end{equation*}
$$

AWE ...

The time moments are given by the power of t :

$$
\begin{equation*}
m_{k}=\frac{-1^{k}}{k!} \int_{0}^{\infty} t^{k} x(t) d t \tag{32}
\end{equation*}
$$

depending upon the output needed we consider a specific component of $X_{h}(s)$,say the i th, its initial conditions and first $2 q-1$ moments that are characterized as:

$$
\begin{align*}
{\left[m_{-1}\right]_{i} } & =\left[x_{h}(0)\right]_{i} \\
{\left[m_{0}\right]_{i} } & =\left[-A^{-1} x_{h}(0)\right]_{i} \\
{\left[m_{1}\right]_{i} } & =\left[-A^{-2} x_{h}(0)\right]_{i} \\
\vdots & \vdots \tag{33}\\
{\left[m_{2 q-2}\right]_{i} } & =\left[-A^{-2 q+1} x_{h}(0)\right]_{i}
\end{align*}
$$

The rest of the process follows similar method as for MNA formulation of RLC circuits.

AWE ...

Now these moments are matched to a lower order frequency-domain function of the form:

$$
\begin{align*}
\hat{X}_{i}(s) & =\frac{k_{1}}{s-p_{1}}+\frac{k_{2}}{s-p_{2}}+\cdots+\frac{k_{q}}{s-p_{q}} \\
& =\sum_{l=1}^{q} \frac{k_{l}}{s-p_{l}}=-\sum_{l=1}^{q} \frac{k_{l} / p_{l}}{1-s / p_{l}} \tag{34}
\end{align*}
$$

where p_{1} through p_{q} are the complex approximating poles and k_{l} through k_{q} their appropriate residues. In other words, the time-domain moments are to be matched to those of an approximating function of the form

$$
\begin{equation*}
\hat{x}_{i}(t)=\sum_{l=1}^{q} k_{l} e^{p_{l} t} \tag{35}
\end{equation*}
$$

AWE ...

Expanding each of the terms in (34) into a series about the origin, and upon inclusion of the initial conditions, the following set of nonlinear simultaneous equations for the i th state variable is obtained:

$$
\begin{align*}
&-\left(k_{1}+k_{2}+\cdots+k_{q}\right)=\left[m_{-1}\right]_{i} \\
&-\left(\frac{k_{1}}{p_{1}}+\frac{k_{2}}{p_{2}}+\cdots+\frac{k_{q}}{p_{q}}\right)=\left[m_{0}\right]_{i} \\
&-\left(\frac{k_{1}}{p_{1}^{2}}+\frac{k_{2}}{p_{2}^{2}}+\cdots+\frac{k_{q}}{p_{q}^{2}}\right)=\left[m_{1}\right]_{i} \\
& \vdots \vdots \tag{36}\\
&-\left(\frac{k_{1}}{p_{1}^{2 q-1}}+\frac{k_{2}}{p_{2}^{2 q-1}}+\cdots+\frac{k_{q}}{p_{q}^{2 q-1}}\right)=\left[m_{2 q-2}\right]_{i}
\end{align*}
$$

A solution for the approximating poles and residues from this set of nonlinear equations could proceed in terms of Newton-Raphson or a similar iteration method.

AWE ...

we reformulate the problem to allow for direct solution of the approximating poles and residues. The set of equations in (36) can be summarized in matrix form as

$$
\begin{equation*}
-\mathcal{V} k=\left[m_{l}\right]_{i} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{V} \wedge^{-a} k=\left[m_{h}\right]_{i} \tag{38}
\end{equation*}
$$

where m_{l}, represents the low-order moments $(-1,0, \cdots, q-2) . m_{h}$ represents the high-order moments $(q-1, q, \cdots, 2 q-2) . \Lambda^{-1}$ is a diagonal matrix of the reciprocal complex poles, and \mathcal{V} is the well-known Vandermonde matrix:

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{39}\\
p_{1}^{-1} & p_{2}^{-1} & \cdots & p_{q}^{-1} \\
p_{1}^{-2} & p_{2}^{-2} & \cdots & p_{q}^{-2} \\
\vdots & \vdots & & \vdots \\
p_{1}^{-q+1} & p_{2}^{-q+1} & \cdots & p_{q}^{-q+1}
\end{array}\right]
$$

AWE ...

It follows then from (37) that

$$
\begin{align*}
& k=-\mathcal{V}^{-1} m_{l} \tag{40}\\
& \mathcal{V} \wedge^{-q} \mathcal{V}^{-1} m_{l}=m_{h} \tag{41}
\end{align*}
$$

Since the Vandermonde matrix is the modal matrix for a system matrix in companion form, (41) is equivalent to:

$$
\begin{equation*}
A_{c}^{-q} m_{l}=m_{h} \tag{42}
\end{equation*}
$$

where

$$
A_{c}^{-1}=\left[\begin{array}{ccccc}
0 & 1 & 0 & . & 0 \tag{43}\\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{q-1}
\end{array}\right]
$$

with the coefficients normalized so that $a_{q}=1$. This matrix is characterized as A_{c}^{-1} rather than A_{c}, because its eigenvalues are the reciprocals of the approximating poles for the original system (24).

AWE ...

The set of simultaneous nonlinear equations (42) for the coefficients a_{0}, through a_{q-1}, a_{c} can be written recursively to yield the following set of linear equations:

$$
\left[\begin{array}{cccc}
m_{-1} & m_{0} & \cdots & m_{q-2} \tag{44}\\
m_{0} & m_{1} & \cdots & m_{q-1} \\
\vdots & \vdots & & \vdots \\
m_{q-2} & m_{q-1} & \cdots & m_{2 q-3}
\end{array}\right]\left[\begin{array}{c}
-a_{0} \\
-a_{1} \\
\vdots \\
-a_{q-1}
\end{array}\right]=\left[\begin{array}{c}
m_{q-1} \\
m_{q} \\
\vdots \\
m_{2 q-2}
\end{array}\right]
$$

It is in terms of a_{c}, we can form a characteristic polynomial

$$
\begin{equation*}
a_{0}+a_{1} p^{-1}+a_{2} p^{-2}+\cdots+a_{q-1} p^{-q+1}+p^{-q}=0 \tag{45}
\end{equation*}
$$

Krylov Subspace Approach

Computing the k th moment explicitly involves evaluating terms of the form $A^{-k} r$,i.e., the k th member of the Krylov subspace of A and r. If A has well separated eigenvalues (as it typically does for circuit matrices), then for $k \simeq 10$ and above, only the dominant eigenvalue contributes to these terms, with non-dominant ones receding into numerical insignificance.
Krylov-subspace methods are best viewed as reducing the system via projection. They produce two projection matrices, $V \in R^{n \times q}$ and $W^{T} \in R^{q \times n}$, such that the reduced system is obtained as

$$
\begin{align*}
\underbrace{W^{\top} E}_{\hat{E}} \dot{X} & =\underbrace{W^{\top} A V}_{\hat{A}} x(t)+\underbrace{W^{\top} B}_{\hat{B}} u(t) \\
y(t) & =\underbrace{C^{T} V}_{\hat{C}^{T}} x(t)+D u(t) \tag{46}
\end{align*}
$$

For the reduction to be practically meaningful, q, the size of the reduced system, must be much smaller than n, the size of the original. If the Lanczos process is used, then $W^{\top} V \approx l$ (i.e., the two projection bases are bi-orthogonal). If the Arnoldi process is applied, then $W=V$ and $W^{\top} V=I$.

Padé via the Lanczos (PVL) Algorithm

- Limitations of AWE
- AWE computes with relatively a small no. of poles
- Less accurate reduced order model $\mathrm{H}(\mathrm{s})$ improves only up to a small value of q
- Improvements in PVL
- Arbitrary number of poles and zeros are used
- Computational cost similar to AWE

Definition 1-Krylov Subspace: The Krylov subspace $\mathcal{K}_{m}(A, p)$ generated by a matrix A and vector p, of order m, is the space spanned by the set of vectors $\left\{p, A p, A^{2} p, \ldots, A^{m-1} p\right\}$.

- A basis for a Krylov subspace can be quickly computed if A can be rapidly applied to p, e.g. due to sparsity. This fact gives Krylov-based model reduction the potential for cost and savings. Extremely simple [?] but not particularly effective choices for V and W are

$$
\begin{align*}
\operatorname{colsp} V(s) & =\mathcal{K}_{M}((A-s E), B) \\
& =\operatorname{span}\left\{B,(A-s E) B, \ldots,(A-s E)^{M-1} B\right\} \tag{47}\\
\operatorname{colsp} W(s) & =\mathcal{K}_{M}\left((A-s E)^{T}, C\right) \\
& =\operatorname{span}\left\{C,(A-s E)^{T} C, \ldots,\left((A-s E)^{T}\right)^{M-1} C\right\} \tag{48}
\end{align*}
$$

- The essential elements of Krylov-subspace-based reduction are given by Suppose $K_{m}\left(A^{-1}, p\right) \subset$ colspan (V), then $V\left(V^{\top} A V\right)^{-k} V^{\top} B=V \hat{A}^{-k} b=A^{-k} b$, for $k<m$.

PVL ...

The algorithm of Lanczos computes rectangular matrices V and $W \in R^{N \times M}$ that restrict a specified matrix G to a tridiagonal form,

$$
S=W^{T} G V=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{2} & 0 & \cdots \\
\gamma_{2} & \alpha_{2} & \ddots & \ddots \\
0 & \ddots & \ddots & \beta_{M} \\
0 & \cdots & \gamma_{M} & \alpha_{M}
\end{array}\right]
$$

and that satisfy

$$
\begin{equation*}
\operatorname{colsp}\{V\} \in \mathcal{K}_{M}\left(G, \hat{v}_{1}\right) \quad \text { and } \quad \operatorname{colsp}\{W\} \in \mathcal{K}_{M}\left(G^{T}, \hat{w}_{1}\right) \tag{49}
\end{equation*}
$$

The vectors \hat{v}_{1} and \hat{w}_{1} are user-specified starting vectors which lie in the direction of the first column of V and W. Alternatively and equivalently, the Lanczos method can be viewed as an approach for constructing biorthogonal V and W, i.e., $W^{\top} V=I$, that satisfy the same Krylov subspace conditions (49).

PVL: Basic algorithm layout

- System of equations \& transfer function, defined by

$$
\begin{aligned}
& C \dot{x}=-G x+b u \quad y=I^{T} x \\
& H(s)=I^{T}(G+s C)^{-1} b
\end{aligned}
$$

- Using s_{0} as an arbitrary expansion point the modified transfer function is

$$
H\left(s_{0}+\sigma\right)=I^{T}(I-s A)^{-1} r
$$

- The reduced order transfer generated by PVL:
- The Taylor coefficients necessary for the Padé approximant H_{q} result from the following expansion of $H(s)$ about s_{0} :

$$
H\left(s_{0}+\sigma\right)=I^{T}\left(I+\sigma A+\sigma^{2} A^{2}+\cdots\right) r=\sum_{k=0}^{\infty} m_{k} \sigma^{k},
$$

where

$$
\begin{equation*}
m_{k}=I^{T} A^{k} r, \quad k=0,1, \ldots \tag{50}
\end{equation*}
$$

$$
H_{q}\left(s_{0}+\sigma\right)=\sum_{j=1}^{q} \frac{I^{\top} r \cdot \mu_{j} v_{j}}{1-\sigma \lambda_{j}}
$$

PVL: Basic algorithm layout ...

Run q steps of the Lanczos Algorithm to obtain the tridiagonal matrix T_{q}

- Compute $\rho_{n}=\|v\|_{2}$ and $\eta_{n}=\|w\|_{2}$. If $\rho_{n}=0$ or $\eta_{n}=0$, then stop.
- Set

$$
\begin{gathered}
v_{n}=\frac{v}{\rho_{n}}, \quad w_{n}=\frac{w}{\eta_{n}}, \\
\delta_{n}=w_{n}^{T} v_{n}, \quad \alpha_{n}=\frac{w_{n}^{T} A v_{n}}{\delta_{n}}, \\
\beta_{n}=\eta_{n} \frac{\delta_{n}}{\delta_{n-1}}, \quad \gamma_{n}=\rho_{n} \frac{\delta_{n}}{\delta_{n-1}}, \\
v=A v_{n}-v_{n} \alpha_{n}-v_{n-1} \beta_{n} \\
w=A^{T} w_{n}-w_{n} \alpha_{n}-w_{n-1} \gamma_{n}
\end{gathered}
$$

PVL: Basic algorithm layout ...

Matrix T_{q} is given by

$$
T_{q}=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{2} & \cdots & 0 \\
\rho_{2} & \alpha_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \beta_{q} \\
0 & \cdots & \rho_{q} & \alpha_{q}
\end{array}\right]
$$

Compute the eigen decomposition of the matrix T_{q} and set:

$$
T_{q}=S_{q} \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}\right) S_{q}^{-1}
$$

$\mu=S_{q}^{T} e_{1} \quad$ and $\quad v=S_{q}^{-1} e_{1}$.
Compute poles and residues by setting:

$$
p_{j}=1 / \lambda_{j} \text { and } k_{j}=\frac{I^{\top} r \cdot \mu_{j} v_{j}}{\lambda_{j}} \text { for all } j=1,2, \ldots, q
$$

Arnoldi Approach

Arnoldi algorithm is a better conditioned process that direct evaluation of the moments because it generates an orthogonal set of vectors which span $A^{k} b$, for $k=0,1, \ldots, 2 q-1$.
Restating the system of equations for the linear system used in the Arnoldi method as input can be written as:

$$
\begin{align*}
\dot{x} & =A x+b u(t) \tag{51}\\
y & =c^{T} x \tag{52}
\end{align*}
$$

The Arnoldi method is based on the following "Arnoldi algorithm" which has 3 inputs:
A, an N by N matrix; $b \in R^{N}$; and an integer q, which will be the size chosen for the reduced system and usually $q \ll N$ and will generate 3 outputs:
V, an N by q matrix; H, an q by q matrix; and $v_{q+1} \in R^{q}$ which will satisfy the following 3 properties:

Arnoldi ...

Property

V is an column-orthonormal matrix; its q columns form a set of orthonormal vectors in R^{N};

$$
\begin{equation*}
A V=V H+h v_{q+1} e_{q}^{T} \tag{53}
\end{equation*}
$$

where h is a scalar and the e_{q} is the q th standard unit vector in R^{q}

$$
\begin{equation*}
A^{k} b=\|b\| V H^{k} e_{1} \tag{54}
\end{equation*}
$$

where $k=0, \cdots, q-1$ and $\|$.$\| is the 2$-norm.
The Arnoldi algorithm [?] is actually a modified Gram-Schmidt process for the Krylov subspace $\mathcal{K}(A, b)=\operatorname{span}\left\{b, A b, A^{2} b, \cdots, A^{q-1} b\right\}$ with the orthogonalized q vectors v_{1}, \cdots, v_{q} constitute of the q columns of the matrix V as described below: First form unit vector $v_{1}=b /\|b\|$

Arnoldi ...

- Trade off between optimality to gain guaranteed stability
- It is a modified Gram-Schmidt process
- Arnoldi process creates two matrices V_{q} and H_{q} satisfying

$$
A V=V H+h_{q+1, q} V_{q+1} e_{q}^{T}
$$

- For the moment $A^{k} b$ of the system to match

$$
\begin{aligned}
A^{k} b & =\|b\| A^{k} V_{q} e_{1}=\|b\| V_{q} H_{q}^{k} e_{1} \\
m_{k} & =c^{T} A^{k} b=\underbrace{\|b\| c^{T} V_{q}}_{c_{q}^{T}} \underbrace{H_{q}^{k}}_{A_{q}^{k}} \underbrace{e_{1}}_{b_{q}}
\end{aligned}
$$

- Requiring the state space realization of system to be A

$$
A_{q}=H_{q} b_{q}=e_{1} \quad c_{q}=\|b\| V_{q}^{T} c
$$

- we get

$$
\begin{align*}
H \dot{z} & =z+V^{T} b u(t) \tag{55}\\
y & =c^{T} V z \tag{56}
\end{align*}
$$

Arnoldi Approach: Basic algorithm layout ...

$$
\begin{aligned}
& v_{1}=b /\|b\| \\
& \text { for } j=1: q \\
& \left\{w=A v_{j}\right. \\
& \text { for } i=1: j \\
& \left\{h_{i, j}=w^{T} v_{i}\right. \\
& \left.w=w-h_{i, j} v_{i}\right\} \\
& h_{j+1, j}=\|w\| \\
& i f\left(h_{j+1, j} \neq 0\right) \\
& \left.v_{j+1}=w / h_{j+1, j}\right\}
\end{aligned}
$$

Jacobi-Davidson Method

The time domain formulation of any system is given by as follows:

$$
\left\{\begin{array}{l}
C \frac{d x(t)}{d t}+G x(t)=u(t) \tag{57}\\
x(0)=0
\end{array}\right.
$$

where $x \in R^{n}$ contains the circuit state, $C \in R^{n \times n}$ is the capacitance matrix, $G \in R^{n \times n}$ is the conductance matrix and $u(t)$ models the excitation.

Jacobi-Davidson Method ...

Because all the properties cannot be computed in time-domain, the problem is formulated in frequency-domain by applying the Laplace transforms:

$$
\begin{equation*}
(s C+G) X(s)=\mathcal{U}(s) \tag{58}
\end{equation*}
$$

where \mathcal{X}, \mathcal{U} are the Laplace-transform of the variable x, u and s is the variable in the frequency domain. The transfer function of the circuit is given by:

$$
\begin{equation*}
\mathcal{H}(s)=(s C+G)^{-1} \tag{59}
\end{equation*}
$$

The poles are the values $p_{k} \in C$ that satisfy $\operatorname{det}\left(p_{k} C+G\right)=0$, hence $\left(G+p_{k} C\right) x=0$, for some $x \neq 0$, which leads to the eigenvalue problem $\left(\lambda=-p_{k}\right)$:

$$
\begin{equation*}
G x=\lambda C x, \quad x \neq 0 \tag{60}
\end{equation*}
$$

The problem of computing zeros is similar to that of computing poles. Especially for large circuits $\left(n>10^{4}\right)$, robust, iterative methods for the generalized eigenvalue problem with sufficient accuracy and acceptable computational cost are needed. The Jacobi-Davidson method is one of the approaches which like Arnoldi method does separate pole-zero computation while the approaches like AWE and PVL do combined pole-zero computation.

Application of algorithms for linear circuits

Results: AWE with reduced order $=5$ for a line with 25 elements

Results: PVL with reduced order $=5-25$ for a line with 100 elements

Comparison of results for differen sizes for PVL method

Results: Arnoldi with reduced order $=5-25$ for a line with 100 elements

Comparison of model generation time

Comparing model simulation time

- Circuit simulation (SPICE) time $=3.36 \mathrm{sec}$

Results: Jacobi-Davidson with reduced order $=6-16$ for a line with 100 elements

Conclusions

- Model Order Reduction is very attarctive for CAD-synthesis \& automated verification
- The linear model order reduction have been reported in literature from around a decade and the techniques AWE, PVL and Arnoldi are already too matured to be improved in any direction
- but still the main drawback that leaves the applicability of these algorithm a bit difficult as faced by us during this work was the generation of the state-space matrix in general for very large asymmetric circuits.
- The improvement in the linear algorithms would come only when we try and suggest any of the newer methods like we did an attempt to bring Jacobi-Davidson method; the simulation is expected to be improved with its two variations JDQR and JDQZ.
- The methods for weakly nonlinear systems have also been investigated by us as reported in lieterature in recent past

References

1. Nidhi Agarwal, Approaches for Reduced Order Modeling of Non-Linear VLSI Circuits: A Comaprison, M. Tech. dissertation, Dept. of ECE, MNIT Jaipur, 2007.
2. Y. Saad, Numerical methods for large Eigenvalue problems, www.umn.edu (e-book)
3. H. A. van der Vorst, Iterative methods for large linear systems, citeseer.ist.psu.edu
4. Cheng et al, Symbolic analysis and reductions of VLSI circuits, Springer, 2005
5. J.Roychowdhury "Algorithmic Macromodelling Methods for Mixed-Signal Systems" In Proc. Conf. on VLSI Design, 2004
6. P.Feldmann and R.W. Freund "Efficient linear circuit analysis by Padé approximation via the Lanczos process" IEEE Trans. CAD, 14(5):639-649, May 1995.
7. L.M. Silveira, M. Kamon, I. Elfadel, and J. White "A coordinate transformed Arnoldi algorithm for generating guaranteed stable reduced order models of RLC circuits" In Proc. ICCAD, pages 288-294, November 1996.
8. L.T. Pillage and R.A. Rohrer "Asymptotic waveform evaluation for timing analysis" IEEE Trans. CAD, 9:352-366, April 1990.
